Gutiérrez Fosado Yair Augusto, Michieletto Davide, Martelli Fausto
University of Edinburgh, School of Physics and Astronomy, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom.
University of Edinburgh, MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh EH4 2XU, United Kingdom.
Phys Rev Lett. 2024 Dec 31;133(26):266102. doi: 10.1103/PhysRevLett.133.266102.
In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations. At the phase transition, the transient opening of the HBN topological motifs yields mechanical fragility on the macroscale. Our results provide a detailed microscopic description of the topological nature of the phase transition and the hysteresis cycle between amorphous ices. We argue that the topological transition discovered in this work may not only improve our understanding of amorphous ices, but also represent a generic mechanism for the densification of network-forming materials.
在本信函中,我们研究了非晶冰之间的相变以及分隔它们的滞后循环的本质。我们发现,当系统从低压下的低密度非晶冰(LDA)转变为高压下的高密度非晶冰(HDA)时,会发生拓扑转变。具体而言,我们揭示出氢键网络(HBN)在LDA和HDA相中呈现出质的不同的拓扑结构:前者以解缠的环图案为特征,而后者则显示出拓扑复杂的长寿命霍普夫链接和打结构型。在相变处,HBN拓扑图案的瞬态打开在宏观尺度上产生机械脆性。我们的结果提供了相变的拓扑本质以及非晶冰之间滞后循环的详细微观描述。我们认为,这项工作中发现的拓扑转变不仅可能增进我们对非晶冰的理解,而且还可能代表网络形成材料致密化的一种通用机制。