Suppr超能文献

机器学习阐明了质粒脱氧核糖核酸脂质纳米颗粒用于细胞类型选择性转染的设计特征。

Machine Learning Elucidates Design Features of Plasmid Deoxyribonucleic Acid Lipid Nanoparticles for Cell Type-Preferential Transfection.

机构信息

Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States.

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States.

出版信息

ACS Nano. 2024 Oct 22;18(42):28735-28747. doi: 10.1021/acsnano.4c07615. Epub 2024 Oct 7.

Abstract

To broaden the accessibility of cell and gene therapies, it is essential to develop and optimize nonviral, cell type-preferential gene carriers such as lipid nanoparticles (LNPs). While high-throughput screening (HTS) approaches have proven effective in accelerating LNP discovery, they are often costly, labor-intensive, and do not consistently yield actionable design rules that direct screening efforts toward the most relevant chemical and formulation parameters. In this study, we employed a machine learning (ML) workflow, utilizing well-curated plasmid DNA LNP transfection data sets across six cell types, to extract compositional and chemical insights from HTS studies. Our approach achieved prediction errors averaging between 5 and 10%, depending on the cell type. By applying SHapley Additive exPlanations to our ML models, we uncovered key composition-function relationships that govern cell type-preferential LNP transfection efficiency. Notably, we identified consistent LNP composition parameters that enhance transfection efficiency across diverse cell types, including a helper lipid molar percentage of charged lipids between 9 and 50% and the inclusion of cationic/zwitterionic helper lipids. Additionally, several parameters were found to modulate cell type-preferentiality, such as the total molar percentage of ionizable and helper lipids, N/P ratio, PEGylated lipid molar percentage of uncharged lipids, and hydrophobicity of the helper lipid. This study leverages HTS of compositionally diverse LNP libraries combined with ML analysis to elucidate the interactions between lipid components in LNP formulations, providing insights that contribute to the design of LNP compositions tailored for cell type-preferential transfection.

摘要

为了拓宽细胞和基因治疗的可及性,开发和优化非病毒、细胞类型偏好的基因载体,如脂质纳米粒(LNPs)至关重要。虽然高通量筛选(HTS)方法已被证明在加速 LNP 发现方面非常有效,但它们通常成本高昂、劳动密集且不能始终产生可操作的设计规则,以指导筛选工作朝着最相关的化学和制剂参数方向进行。在这项研究中,我们采用了机器学习(ML)工作流程,利用经过精心策划的质粒 DNA LNP 转染数据集,对来自 HTS 研究的细胞类型进行了成分和化学分析。我们的方法在六个细胞类型中实现了平均预测误差在 5%到 10%之间,具体取决于细胞类型。通过对我们的 ML 模型应用 SHapley Additive exPlanations,我们揭示了控制细胞类型偏好性 LNP 转染效率的关键组成-功能关系。值得注意的是,我们确定了一致的 LNP 组成参数,可以提高跨多种细胞类型的转染效率,包括带电荷脂质的助脂摩尔百分比在 9%到 50%之间,以及阳离子/两性离子助脂的包含。此外,还发现了几个参数可以调节细胞类型偏好性,例如可离子化和助脂的总摩尔百分比、N/P 比、不带电荷脂的 PEG 化脂的摩尔百分比以及助脂的疏水性。这项研究利用 HTS 组合的成分多样化的 LNP 文库与 ML 分析相结合,阐明了 LNP 制剂中脂质成分之间的相互作用,为设计针对细胞类型偏好性转染的 LNP 成分提供了有价值的见解。

相似文献

引用本文的文献

5
Immunomodulatory Delivery Materials for Tissue Repair.用于组织修复的免疫调节递送材料
Adv Healthc Mater. 2025 Jun 29:e2501400. doi: 10.1002/adhm.202501400.

本文引用的文献

8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验