Gao Dace, van der Pol Tom P A, Musumeci Chiara, Tu Deyu, Fabiano Simone
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden; email:
Annu Rev Chem Biomol Eng. 2025 Jun;16(1):293-320. doi: 10.1146/annurev-chembioeng-082323-114810. Epub 2025 Jan 29.
Organic mixed ionic-electronic conductors (OMIECs) could revolutionize bioelectronics by enabling seamless integration with biological systems. This review explores their role in neural biomimicry and biointerfacing, with a focus on how backbone design, sidechain optimization, and antiambipolarity impact performance. Recent advances highlight OMIECs' biocompatibility and mechanical compliance, making them ideal for bioelectronic applications. However, challenges such as mechanical mismatch and electrical impedance remain. We discuss innovative solutions to these issues to enhance OMIEC functionality. In neuromorphic bioelectronics, OMIECs show promise for bridging artificial and biological neural systems, though further improvements in conductivity and resolution are needed. Continued innovation in materials and design is crucial to unlocking their full potential, driving advancements in both technology and medicine.
有机混合离子-电子导体(OMIECs)能够与生物系统实现无缝集成,从而可能彻底改变生物电子学。本综述探讨了它们在神经仿生和生物接口中的作用,重点关注主链设计、侧链优化和抗双极性如何影响性能。最近的进展突出了OMIECs的生物相容性和机械顺应性,使其成为生物电子应用的理想选择。然而,诸如机械不匹配和电阻抗等挑战仍然存在。我们讨论了针对这些问题的创新解决方案,以增强OMIEC的功能。在神经形态生物电子学中,OMIECs有望连接人工和生物神经系统,不过仍需要进一步提高导电性和分辨率。材料和设计的持续创新对于释放其全部潜力、推动技术和医学的进步至关重要。