Suppr超能文献

有机离子光电子学:从电致变色到人工视网膜

Organic Iono-Optoelectronics: From Electrochromics to Artificial Retina.

作者信息

Chen Ke, Song Inho, You Liyan, Mei Jianguo

机构信息

Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

Department of Chemical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.

出版信息

Acc Chem Res. 2025 Jan 7;58(1):24-35. doi: 10.1021/acs.accounts.4c00512. Epub 2024 Dec 25.

Abstract

ConspectusOrganic mixed ionic electronic conductors (OMIECs) represent an exciting and emerging class of materials that have recently revitalized the field of organic semiconductors. OMIECs are particularly attractive because they allow both ionic and electronic transport while retaining the inherent benefits of organic semiconducting materials such as mechanical conformability and biocompatibility. These combined properties make the OMIECs ideal for applications in bioelectronics, energy storage, neuromorphic computing, and electrochemical transistors for sensing. Within the realm of OMIECs, a subset of materials and devices known as organic iono-optoelectronics (OIOEs) further leverage the optoelectronic properties of organic semiconductors and functions based on ionic-electronic-photonic interactions. Ionic-electronic coupling can regulate the bandgap of organic semiconducting materials, allowing the tuning of optical properties, which forms the basis for organic electrochromic technology. Additionally, light, as a form of energy, can modulate ionic-electronic coupling, enabling applications such as machine vision and artificial retina.Among these applications, organic electrochromic devices have demonstrated their practical and commercial value due to their rapid, high-contrast color switching capabilities and potential for cost-effective mass production and roll-to-roll manufacturing. Ambilight Inc. has spearheaded this technology, introducing the first organic electrochromic sunroof product, now used in hundreds of thousands of vehicles. Despite these promising advancements, organic electrochromic devices face several challenges. These include achieving optical contrast higher than 90%, improving color switching speed to meet the demands of dynamic display applications, and enhancing durability to ensure stability in extreme environmental conditions, such as prolonged exposure to sunlight. Growing research on light-modulated ionic-electronic coupling suggests that this fundamental process can be used to mimic the ion-flux-dependent light-capturing processes found in biological retina systems, offering a promising approach for constructing future artificial retina (vision). The intrinsic softness and biocompatibility of the OIOEs further enhance the potential of the artificial retina to interface with biological systems for applications in biomedical optoelectronics and human-machine interfaces. Compared to electrochromic technology, artificial retinas and biomedical optoelectronics are still in their infancy. In this Account, we use two representative technologies─electrochromic devices and artificial retina─to introduce the fundamental processes, advancements, and challenges in the field of OIOEs. We begin with an overview of the fundamental processes shared by and unique to these two technologies. Next, we discuss their respective challenges and the approaches taken by our group and others to improve their performance. Finally, we suggest future research directions. We hope this Account will introduce readers to these fascinating materials and devices and inspire further interest in these research areas.

摘要

综述

有机混合离子电子导体(OMIECs)是一类令人兴奋的新兴材料,最近为有机半导体领域注入了新的活力。OMIECs特别具有吸引力,因为它们既能实现离子传输又能实现电子传输,同时还保留了有机半导体材料的固有优点,如机械适应性和生物相容性。这些综合特性使OMIECs成为生物电子学、能量存储、神经形态计算以及用于传感的电化学晶体管等应用的理想选择。在OMIECs领域,一类被称为有机离子光电子学(OIOEs)的材料和器件进一步利用了有机半导体的光电特性以及基于离子 - 电子 - 光子相互作用的功能。离子 - 电子耦合可以调节有机半导体材料的带隙,从而实现光学性质的调谐,这构成了有机电致变色技术的基础。此外,光作为一种能量形式,可以调制离子 - 电子耦合,实现诸如机器视觉和人工视网膜等应用。

在这些应用中,有机电致变色器件因其快速、高对比度的颜色切换能力以及具有成本效益的大规模生产和卷对卷制造的潜力,已展现出其实际和商业价值。Ambilight公司率先推动了这项技术,推出了首款有机电致变色天窗产品,目前已应用于数十万辆汽车。尽管取得了这些令人鼓舞的进展,但有机电致变色器件仍面临一些挑战。这些挑战包括实现高于90%的光学对比度、提高颜色切换速度以满足动态显示应用的需求,以及增强耐久性以确保在极端环境条件下(如长时间暴露在阳光下)的稳定性。对光调制离子 - 电子耦合的研究不断增加,这表明这一基本过程可用于模拟生物视网膜系统中发现的依赖离子通量的光捕获过程,为构建未来的人工视网膜(视觉)提供了一种有前景的方法。OIOEs固有的柔软性和生物相容性进一步增强了人工视网膜与生物系统接口的潜力,可用于生物医学光电子学和人机接口应用。与电致变色技术相比,人工视网膜和生物医学光电子学仍处于起步阶段。在本综述中,我们使用两种代表性技术——电致变色器件和人工视网膜——来介绍OIOEs领域的基本过程、进展和挑战。我们首先概述这两种技术共有的以及各自独特的基本过程。接下来,我们讨论它们各自面临的挑战以及我们团队和其他团队为提高其性能所采取的方法。最后,我们提出未来的研究方向。我们希望本综述能让读者了解这些迷人的材料和器件,并激发对这些研究领域的进一步兴趣。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验