Suppr超能文献

Optimizing nano-sized oxygen bubble application for prolonged aerobic degradation of BTEX in contaminated groundwater.

作者信息

Kwon JongBeom, Park Sunhwa, Kim Sungpyo, Kim Young, Han Kyungjin

机构信息

National Institute of Environmental Research, Incheon, 22689, Republic of Korea.

Department of Environmental Engineering, Korea University, Sejong, 30019, Republic of Korea.

出版信息

J Environ Manage. 2025 Feb;375:124287. doi: 10.1016/j.jenvman.2025.124287. Epub 2025 Jan 29.

Abstract

This study investigates the use of nano-sized oxygen bubbles (NOBs) to enhance BTEX (benzene, toluene, ethylbenzene, xylene) biodegradation in groundwater. Optimized NOBs, averaging 155 nm and at a concentration of 6.59 × 10⁸ bubbles/mL, were found to provide sustained oxygen release with a half-life of approximately 50 days. Laboratory column experiments demonstrated that NOBs released up to 380% more oxygen than initially injected, significantly boosting BTEX degradation. The repeated injection of NOBs increased the volume of trapped bubbles within soil pores, enhancing long-term oxygen release efficiency by expanding the available gas phase within the porous matrix. NOB treatment resulted in markedly lower effluent BTEX concentrations and elevated gene expression linked to BTEX-degrading enzymes. This mechanism supports the sustainability of NOBs as an oxygen source, maintaining aerobic conditions over extended periods. Compared to traditional oxygen sources, NOBs improve oxygen solubility without introducing secondary pollutants, offering a novel in situ remediation strategy for urban groundwater contamination, thereby supporting long-term monitored natural attenuation (MNA).

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验