Suppr超能文献

不同自主程度下群体元宇宙中的机器教学。

Machine teaching in Swarm Metaverse under different levels of autonomy.

作者信息

Hussein Aya, Nguyen Hung, Abbass Hussein A

机构信息

Faculty of Science and Technology, University of Canberra, Canberra, Australia.

Department of Software Development, National Laboratory for Securing Information (NLSI), Hanoi, Vietnam.

出版信息

Philos Trans A Math Phys Eng Sci. 2025 Jan 30;383(2289):20240149. doi: 10.1098/rsta.2024.0149.

Abstract

Shepherding algorithms enable scalable swarm control via the utilization of one or a few control agents. Despite their demonstrated effectiveness in controlling swarms of point-particle agents, shepherding algorithms have been barely evaluated in controlling realistic swarms of uncrewed vehicles (UxVs). Furthermore, existing shepherding algorithms face significant challenges in dealing with complex environments such as those featuring obstacles. We address these research gaps by studying the use of human demonstrations for teaching herding behaviours to machine learning controllers. In particular, we focus on how the level of autonomy used for collecting human demonstrations affects the effectiveness of the resulting swarm controller performance. Our experimental investigation shows that demonstrations collected under a high level of autonomy result in a significantly higher success rate than those collected under a low level of autonomy. Our findings highlight that providing high-level commands for the human demonstrator is more effective even when the demonstrations is used for training a low-level controller.This article is part of the theme issue 'The road forward with swarm systems'.

摘要

引导算法通过利用一个或几个控制代理实现可扩展的群体控制。尽管引导算法在控制点粒子代理群体方面已证明有效,但在控制实际无人车辆(UxV)群体方面几乎未得到评估。此外,现有的引导算法在处理诸如存在障碍物的复杂环境时面临重大挑战。我们通过研究利用人类示范向机器学习控制器传授放牧行为来解决这些研究空白。具体而言,我们关注用于收集人类示范的自主程度如何影响最终群体控制器性能的有效性。我们的实验研究表明,在高自主程度下收集的示范比在低自主程度下收集的示范成功率显著更高。我们的研究结果突出表明,即使示范用于训练低级控制器,为人类示范者提供高级命令也更有效。本文是主题为“群体系统的前进之路”的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验