Suppr超能文献

基于中心的群体的性能预测。

Performance prediction of hub-based swarms.

作者信息

Jain Puneet, Dwivedi Chaitanya, Smith Nicholas, Goodrich Michael A

机构信息

Brigham Young University, Provo, UT, USA.

Amazon AGI, Palo Alto, CA, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2025 Jan 30;383(2289):20240141. doi: 10.1098/rsta.2024.0141.

Abstract

There are powerful tools for modelling swarms that have strong spatial structures like flocks of birds, schools of fish and formations of drones, but relatively little work on developing formalisms for other swarm structures like hub-based colonies doing foraging, maintaining a nest or selecting a new nest site. We present a method for finding low-dimensional representations of swarm state for simulated homogeneous hub-based colonies solving the best-of-N problem. The embeddings are obtained from latent representations of convolution-based graph neural network architectures and have the property that swarm states which have similar performance have very similar embeddings. Such embeddings are used to classify swarm state into binned estimates of success probability and time to completion. We demonstrate how embeddings can be obtained in a sequence of experiments that progressively require less information, which suggests that the methods can be extended to larger swarms in more complicated environments.This article is part of the theme issue 'The road forward with swarm systems'.

摘要

有一些强大的工具可用于对具有强大空间结构的群体进行建模,比如鸟群、鱼群和无人机编队,但针对其他群体结构(如基于中心的殖民地进行觅食、维护巢穴或选择新巢穴地点)开发形式化方法的工作相对较少。我们提出了一种方法,用于为解决N选优问题的模拟均匀的基于中心的殖民地找到群体状态的低维表示。这些嵌入是从基于卷积的图神经网络架构的潜在表示中获得的,并且具有这样的特性:具有相似性能的群体状态具有非常相似的嵌入。此类嵌入用于将群体状态分类为成功概率和完成时间的分箱估计。我们展示了如何在一系列逐渐需要更少信息的实验中获得嵌入,这表明该方法可以扩展到更复杂环境中的更大群体。本文是主题为“群体系统的前进之路”的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验