Michard Frederic, Foss Nicolai B, Bignami Elena G
MiCo, Vallamand, Switzerland.
Department of Anesthesiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
Br J Anaesth. 2025 Feb;134(2):266-269. doi: 10.1016/j.bja.2024.11.002. Epub 2025 Jan 9.
Machine learning (ML) algorithms hold significant potential for extracting valuable clinical information from big data, surpassing the processing capabilities of the human brain. However, it would be naïve to believe that ML algorithms can consistently transform data into actionable insights. Clinical studies suggest that in some instances, they tell clinicians what they already know or can plainly see. Additionally, ML algorithms might not be necessary for analysing 'small data', such as a limited number of haemodynamic variables. In this respect, whether haemodynamic profiling with an ML algorithm offers advantages over straightforward classification tables or simple visual decision support tools remains unclear.
机器学习(ML)算法在从大数据中提取有价值的临床信息方面具有巨大潜力,超越了人类大脑的处理能力。然而,认为ML算法能够始终如一地将数据转化为可操作的见解是天真的。临床研究表明,在某些情况下,它们告诉临床医生的是他们已经知道或能明显看到的东西。此外,对于分析“小数据”,如有限数量的血流动力学变量,ML算法可能并非必要。在这方面,使用ML算法进行血流动力学分析是否比直接的分类表或简单的视觉决策支持工具更具优势仍不明确。