Suppr超能文献

零回波时间序列的深度学习重建,以改善颈椎MRI中骨结构及相关病变的可视化。

Deep learning reconstruction of zero-echo time sequences to improve visualization of osseous structures and associated pathologies in MRI of cervical spine.

作者信息

Kaniewska Malwina, Zecca Fabio, Obermüller Carina, Ensle Falko, Deininger-Czermak Eva, Lohezic Maelene, Guggenberger Roman

机构信息

Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), Zurich, Switzerland.

University of Zurich (UZH), Zurich, Switzerland.

出版信息

Insights Imaging. 2025 Jan 29;16(1):29. doi: 10.1186/s13244-025-01902-0.

Abstract

OBJECTIVES

To determine whether deep learning-based reconstructions of zero-echo-time (ZTE-DL) sequences enhance image quality and bone visualization in cervical spine MRI compared to traditional zero-echo-time (ZTE) techniques, and to assess the added value of ZTE-DL sequences alongside standard cervical spine MRI for comprehensive pathology evaluation.

METHODS

In this retrospective study, 52 patients underwent cervical spine MRI using ZTE, ZTE-DL, and T2-weighted 3D sequences on a 1.5-Tesla scanner. ZTE-DL sequences were reconstructed from raw data using the AirReconDL algorithm. Three blinded readers independently evaluated image quality, artifacts, and bone delineation on a 5-point Likert scale. Cervical structures and pathologies, including soft tissue and bone components in spinal canal and neural foraminal stenosis, were analyzed. Image quality was quantitatively assessed by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR).

RESULTS

Mean image quality scores were 2.0 ± 0.7 for ZTE and 3.2 ± 0.6 for ZTE-DL, with ZTE-DL exhibiting fewer artifacts and superior bone delineation. Significant differences were observed between T2-weighted and ZTE-DL sequences for evaluating intervertebral space, anterior osteophytes, spinal canal, and neural foraminal stenosis (p < 0.05), with ZTE-DL providing more accurate assessments. ZTE-DL also showed improved evaluation of the osseous components of neural foraminal stenosis compared to ZTE (p < 0.05).

CONCLUSIONS

ZTE-DL sequences offer superior image quality and bone visualization compared to ZTE sequences and enhance standard cervical spine MRI in assessing bone involvement in spinal canal and neural foraminal stenosis.

CRITICAL RELEVANCE STATEMENT

Deep learning-based reconstructions improve zero-echo-time sequences in cervical spine MRI by enhancing image quality and bone visualization. This advancement offers additional insights for assessing bone involvement in spinal canal and neural foraminal stenosis, advancing clinical radiology practice.

KEY POINTS

Conventional MRI encounters challenges with osseous structures due to low signal-to-noise ratio. Zero-echo-time (ZET) sequences offer CT-like images of the C-spine but with lower quality. Deep learning reconstructions improve image quality of zero-echo-time sequences. ZTE sequences with deep learning reconstructions refine cervical spine osseous pathology assessment. These sequences aid assessment of bone involvement in spinal and foraminal stenosis.

摘要

目的

确定与传统零回波时间(ZTE)技术相比,基于深度学习的零回波时间(ZTE-DL)序列重建是否能提高颈椎MRI的图像质量和骨骼可视化效果,并评估ZTE-DL序列在标准颈椎MRI基础上用于全面病理评估的附加价值。

方法

在这项回顾性研究中,52例患者在1.5特斯拉扫描仪上接受了使用ZTE、ZTE-DL和T2加权3D序列的颈椎MRI检查。ZTE-DL序列使用AirReconDL算法从原始数据重建。三位盲法读者独立使用5分李克特量表评估图像质量、伪影和骨骼轮廓。分析颈椎结构和病变,包括椎管内软组织和骨骼成分以及神经孔狭窄。通过信噪比(SNR)和对比噪声比(CNR)对图像质量进行定量评估。

结果

ZTE的平均图像质量评分为2.0±0.7,ZTE-DL为3.2±0.6,ZTE-DL的伪影更少,骨骼轮廓更清晰。在评估椎间隙、前缘骨赘、椎管和神经孔狭窄方面,T2加权序列和ZTE-DL序列之间存在显著差异(p<0.05),ZTE-DL提供了更准确的评估。与ZTE相比,ZTE-DL在评估神经孔狭窄的骨性成分方面也有改善(p<0.05)。

结论

与ZTE序列相比,ZTE-DL序列具有更高的图像质量和骨骼可视化效果,并在评估椎管和神经孔狭窄中的骨质受累情况时增强了标准颈椎MRI。

关键相关性声明

基于深度学习的重建通过提高图像质量和骨骼可视化效果改善了颈椎MRI中的零回波时间序列。这一进展为评估椎管和神经孔狭窄中的骨质受累情况提供了更多见解,推动了临床放射学实践。

要点

传统MRI由于信噪比低,在骨质结构方面存在挑战。零回波时间(ZET)序列可提供类似CT的颈椎图像,但质量较低。深度学习重建提高了零回波时间序列的图像质量。具有深度学习重建的ZTE序列可优化颈椎骨质病理评估。这些序列有助于评估脊柱和椎间孔狭窄中的骨质受累情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验