Suppr超能文献

多发性骨髓瘤患者早期复发的检测

Detection of early relapse in multiple myeloma patients.

作者信息

Růžičková Tereza, Vlachová Monika, Pečinka Lukáš, Brychtová Monika, Večeřa Marek, Radová Lenka, Ševčíková Simona, Jarošová Marie, Havel Josef, Pour Luděk, Ševčíková Sabina

机构信息

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.

出版信息

Cell Div. 2025 Jan 29;20(1):4. doi: 10.1186/s13008-025-00143-3.

Abstract

BACKGROUND

Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times. It is currently not possible to predict when relapse will occur; numerous studies investigating the dysregulation of non-coding RNA molecules in cancer suggest that microRNAs could be good markers of relapse.

RESULTS

Using small RNA sequencing, we profiled microRNA expression in peripheral blood in three groups of MM patients who relapsed at different intervals. In total, 24 microRNAs were significantly dysregulated among analyzed subgroups. Independent validation by RT-qPCR confirmed changed levels of miR-598-3p in MM patients with different times to relapse. At the same time, differences in the mass spectra between groups were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry. All results were analyzed by machine learning.

CONCLUSION

Mass spectrometry coupled with machine learning shows potential as a reliable, rapid, and cost-effective preliminary screening technique to supplement current diagnostics.

摘要

背景

多发性骨髓瘤(MM)是第二常见的血液系统恶性肿瘤,其特征是产生单克隆免疫球蛋白的浆细胞浸润骨髓。虽然MM患者的生活质量和寿命显著提高,但MM仍然是一种难以治疗的疾病;几乎所有患者都会复发。由于MM具有高度异质性,患者复发时间各不相同。目前尚无法预测复发时间;众多关于癌症中非编码RNA分子失调的研究表明,微小RNA可能是复发的良好标志物。

结果

我们使用小RNA测序分析了三组复发间隔不同的MM患者外周血中的微小RNA表达情况。在分析的亚组中,共有24种微小RNA存在显著失调。通过RT-qPCR进行的独立验证证实,不同复发时间的MM患者中miR-598-3p水平发生了变化。同时,使用基质辅助激光解吸/电离飞行时间质谱法确定了各组之间质谱的差异。所有结果均通过机器学习进行分析。

结论

质谱联用机器学习显示出作为一种可靠、快速且经济高效的初步筛查技术的潜力,可补充当前的诊断方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62d4/11776158/93efff6aa139/13008_2025_143_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验