Suppr超能文献

用简单的评分规则改进流行病学预测。

Refining epidemiological forecasts with simple scoring rules.

机构信息

Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Oct 3;380(2233):20210305. doi: 10.1098/rsta.2021.0305. Epub 2022 Aug 15.

Abstract

Estimates from infectious disease models have constituted a significant part of the scientific evidence used to inform the response to the COVID-19 pandemic in the UK. These estimates can vary strikingly in their bias and variability. Epidemiological forecasts should be consistent with the observations that eventually materialize. We use simple scoring rules to refine the forecasts of a novel statistical model for multisource COVID-19 surveillance data by tuning its smoothness hyperparameter. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.

摘要

传染病模型的估计构成了用于为英国应对 COVID-19 大流行提供信息的科学证据的重要组成部分。这些估计在其偏差和可变性方面可能有很大差异。流行病学预测应该与最终实现的观测结果一致。我们使用简单的评分规则来调整新型多源 COVID-19 监测数据统计模型的平滑超参数,从而改进其预测。本文是“现实流行病学建模的技术挑战及克服这些挑战的实例”主题专刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8261/9376716/5ffd82d0e1fa/rsta20210305f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验