Ghorbani Abozar, Rostami Mahsa, Ashrafi-Dehkordi Elham, Guzzi Pietro Hiram
Nuclear Science and Technology Research Institute (NSTRI), Nuclear Agriculture Research School, Karaj, Iran.
Department of Food Hygiene and Quality Control, Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
PLoS One. 2025 Jan 30;20(1):e0317918. doi: 10.1371/journal.pone.0317918. eCollection 2025.
Plant viruses pose a significant threat to global agriculture and require efficient tools for their timely detection. We present AutoPVPrimer, an innovative pipeline that integrates artificial intelligence (AI) and machine learning to accelerate the development of plant virus primers. The pipeline uses Biopython to automatically retrieve different genomic sequences from the NCBI database to increase the robustness of the subsequent primer design. The design_primers_with_tuning module uses a random forest classifier that optimizes parameters and provides flexibility for different experimental conditions. Quality control measures, including the evaluation of poly-X content and melting temperature, increase primer reliability. Unique to AutoPVPrimer is the visualize_primer_dimer module, which supports the visual evaluation of primer dimers-a feature missing in other tools. Primer specificity is validated via primer BLAST, which contributes to the overall efficiency of the pipeline. AutoPVPrimer has been successfully applied to the tomato mosaic virus, proving its adaptability and efficiency. The modular design allows customization by the user and extends the applicability to different plant viruses and experimental scenarios. The pipeline represents a significant advance in primer design and provides researchers with an effective tool to accelerate molecular biology experiments. Future developments aim to extend compatibility and incorporate user feedback to consolidate AutoPVPrimer as an innovative contribution to the bioinformatics toolbox and a promising resource for the advancement of plant virology research.
植物病毒对全球农业构成重大威胁,因此需要高效的工具来及时检测它们。我们展示了AutoPVPrimer,这是一种创新的流程,它整合了人工智能(AI)和机器学习技术,以加速植物病毒引物的开发。该流程使用Biopython从NCBI数据库自动检索不同的基因组序列,以增强后续引物设计的稳健性。design_primers_with_tuning模块使用随机森林分类器来优化参数,并为不同的实验条件提供灵活性。包括多聚X含量评估和熔解温度评估在内的质量控制措施提高了引物的可靠性。AutoPVPrimer独有的是visualize_primer_dimer模块,它支持对引物二聚体进行可视化评估——这是其他工具所缺少的功能。引物特异性通过引物BLAST进行验证,这有助于提高整个流程的效率。AutoPVPrimer已成功应用于番茄花叶病毒,证明了其适应性和效率。模块化设计允许用户进行定制,并将适用性扩展到不同的植物病毒和实验场景。该流程代表了引物设计方面的重大进展,并为研究人员提供了一种有效的工具,以加速分子生物学实验。未来的发展旨在扩大兼容性并纳入用户反馈,以巩固AutoPVPrimer作为生物信息学工具包中的一项创新贡献以及植物病毒学研究进展的一个有前景的资源。