School of Public Health, Yale University, New Haven, CT 06520, USA.
BMC Bioinformatics. 2010 Jan 1;11:1. doi: 10.1186/1471-2105-11-1.
Prognosis is of critical interest in breast cancer research. Biomedical studies suggest that genomic measurements may have independent predictive power for prognosis. Gene profiling studies have been conducted to search for predictive genomic measurements. Genes have the inherent pathway structure, where pathways are composed of multiple genes with coordinated functions. The goal of this study is to identify gene pathways with predictive power for breast cancer prognosis. Since our goal is fundamentally different from that of existing studies, a new pathway analysis method is proposed.
The new method advances beyond existing alternatives along the following aspects. First, it can assess the predictive power of gene pathways, whereas existing methods tend to focus on model fitting accuracy only. Second, it can account for the joint effects of multiple genes in a pathway, whereas existing methods tend to focus on the marginal effects of genes. Third, it can accommodate multiple heterogeneous datasets, whereas existing methods analyze a single dataset only. We analyze four breast cancer prognosis studies and identify 97 pathways with significant predictive power for prognosis. Important pathways missed by alternative methods are identified.
The proposed method provides a useful alternative to existing pathway analysis methods. Identified pathways can provide further insights into breast cancer prognosis.
预后是乳腺癌研究中至关重要的关注点。生物医学研究表明,基因组测量可能对预后具有独立的预测能力。已经进行了基因谱研究以寻找具有预测性的基因组测量方法。基因具有内在的通路结构,其中通路由具有协调功能的多个基因组成。本研究的目的是确定具有预测乳腺癌预后能力的基因通路。由于我们的目标从根本上不同于现有研究,因此提出了一种新的通路分析方法。
该新方法在以下几个方面超越了现有方法:首先,它可以评估基因通路的预测能力,而现有方法往往只关注模型拟合精度。其次,它可以考虑通路中多个基因的联合效应,而现有方法往往只关注基因的边际效应。第三,它可以适应多个异构数据集,而现有方法仅分析单个数据集。我们分析了四个乳腺癌预后研究,并确定了 97 个对预后具有显著预测能力的通路。识别出了现有方法错过的重要通路。
所提出的方法为现有通路分析方法提供了一种有用的替代方法。确定的通路可以为乳腺癌预后提供进一步的深入了解。