Suppr超能文献

使用迁移学习进行层次图像分类以提高亚马逊鹦鹉深度学习模型的性能

Hierarchical image classification using transfer learning to improve deep learning model performance for amazon parrots.

作者信息

Kim Jung-Il, Baek Jong-Won, Kim Chang-Bae

机构信息

Biotechnology Major, Sangmyung University, Seoul, 03016, South Korea.

出版信息

Sci Rep. 2025 Jan 30;15(1):3790. doi: 10.1038/s41598-025-88103-3.

Abstract

Numerous studies have proven the potential of deep learning models for classifying wildlife. Such models can reduce the workload of experts by automating species classification to monitor wild populations and global trade. Although deep learning models typically perform better with more input data, the available wildlife data are ordinarily limited, specifically for rare or endangered species. Recently, citizen science programs have helped accumulate valuable wildlife data, but such data is still not enough to achieve the best performance of deep learning models compared to benchmark datasets. Recent studies have applied the hierarchical classification of a given wildlife dataset to improve model performance and classification accuracy. This study applied hierarchical classification by transfer learning for classifying Amazon parrot species. Specifically, a hierarchy was built based on diagnostic morphological features. Upon evaluating model performance, the hierarchical model outperformed the non-hierarchical model in detecting and classifying Amazon parrots. Notably, the hierarchical model achieved the mean Average Precision (mAP) of 0.944, surpassing the mAP of 0.908 achieved by the non-hierarchical model. Moreover, the hierarchical model improved classification accuracy between morphologically similar species. The outcomes of this study may facilitate the monitoring of wild populations and the global trade of Amazon parrots for conservation purposes.

摘要

众多研究已证明深度学习模型在野生动物分类方面的潜力。此类模型可通过自动进行物种分类来监测野生种群和全球贸易,从而减轻专家的工作量。尽管深度学习模型通常在有更多输入数据时表现更佳,但现有的野生动物数据通常有限,尤其是针对珍稀或濒危物种。最近,公民科学项目有助于积累宝贵的野生动物数据,但与基准数据集相比,此类数据仍不足以使深度学习模型达到最佳性能。最近的研究已应用对给定野生动物数据集进行分层分类来提高模型性能和分类准确性。本研究通过迁移学习应用分层分类来对亚马逊鹦鹉物种进行分类。具体而言,基于诊断性形态特征构建了一个层次结构。在评估模型性能时,分层模型在检测和分类亚马逊鹦鹉方面优于非分层模型。值得注意的是,分层模型的平均精度均值(mAP)达到了0.944,超过了非分层模型所达到的0.908的mAP。此外,分层模型提高了形态相似物种之间的分类准确性。本研究的结果可能有助于为保护目的监测亚马逊鹦鹉的野生种群和全球贸易。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b824/11782500/7dd915c09f87/41598_2025_88103_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验