Suppr超能文献

利用结直肠癌类器官和细胞系中的基因表达生物标志物预测患者预后。

Predicting patient outcomes with gene-expression biomarkers from colorectal cancer organoids and cell lines.

作者信息

Razumovskaya Alexandra, Silkina Mariia, Poloznikov Andrey, Kulagin Timur, Raigorodskaya Maria, Gorban Nina, Kudryavtseva Anna, Fedorova Maria, Alekseev Boris, Tonevitsky Alexander, Nikulin Sergey

机构信息

Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia.

P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia.

出版信息

Front Mol Biosci. 2025 Jan 15;12:1531175. doi: 10.3389/fmolb.2025.1531175. eCollection 2025.

Abstract

INTRODUCTION

Colorectal cancer (CRC) is characterized by an extremely high mortality rate, mainly caused by the high metastatic potential of this type of cancer. To date, chemotherapy remains the backbone of the treatment of metastatic colorectal cancer. Three main chemotherapeutic drugs used for the treatment of metastatic colorectal cancer are 5-fluorouracil, oxaliplatin and irinotecan which is metabolized to an active compound SN-38. The main goal of this study was to find the genes connected to the resistance to the aforementioned drugs and to construct a predictive gene expression-based classifier to separate responders and non-responders.

METHODS

In this study, we analyzed gene expression profiles of seven patient-derived CRC organoids and performed correlation analyses between gene expression and IC50 values for the three standard-of-care chemotherapeutic drugs. We also included in the study publicly available datasets of colorectal cancer cell lines, thus combining two different models relevant to cancer research. Logistic regression was used to build gene expression-based classifiers for metastatic Stage IV and non-metastatic Stage II/III CRC patients. Prognostic performance was evaluated through Kaplan-Meier survival analysis and log-rank tests, while independent prognostic significance was assessed using multivariate Cox proportional hazards modeling.

RESULTS

A small set of genes showed consistent correlation with resistance to chemotherapy across different datasets. While some genes were previously implicated in cancer prognosis and drug response, several were linked to drug resistance for the first time. The resulting gene expression signatures successfully stratified Stage II/III and Stage IV CRC patients, with potential clinical utility for improving treatment outcomes after further validation.

DISCUSSION

This study highlights the advantages of integrating diverse experimental models, such as organoids and cell lines, to identify novel prognostic biomarkers and enhance the understanding of chemotherapy resistance in CRC.

摘要

引言

结直肠癌(CRC)的特点是死亡率极高,主要是由于这种癌症具有高转移潜能。迄今为止,化疗仍然是转移性结直肠癌治疗的主要手段。用于治疗转移性结直肠癌的三种主要化疗药物是5-氟尿嘧啶、奥沙利铂和伊立替康,后者可代谢为活性化合物SN-38。本研究的主要目的是找出与上述药物耐药相关的基因,并构建一个基于基因表达的预测分类器,以区分反应者和无反应者。

方法

在本研究中,我们分析了七个患者来源的CRC类器官的基因表达谱,并对三种标准护理化疗药物的基因表达与IC50值进行了相关性分析。我们还将公开可用的结直肠癌细胞系数据集纳入研究,从而结合了两种与癌症研究相关的不同模型。使用逻辑回归为转移性IV期和非转移性II/III期CRC患者构建基于基因表达的分类器。通过Kaplan-Meier生存分析和对数秩检验评估预后性能,同时使用多变量Cox比例风险模型评估独立预后意义。

结果

一小部分基因在不同数据集中均显示出与化疗耐药性一致的相关性。虽然一些基因以前与癌症预后和药物反应有关,但有几个基因是首次与耐药性相关联。由此产生的基因表达特征成功地对II/III期和IV期CRC患者进行了分层,在进一步验证后具有改善治疗结果的潜在临床应用价值。

讨论

本研究强调了整合多种实验模型(如类器官和细胞系)以识别新的预后生物标志物并增强对CRC化疗耐药性理解的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60b7/11774744/4aa2e57dacf1/fmolb-12-1531175-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验