Das Saikat, Sakai Jin, Nakatani Riki, Kondo Ayumu, Tomioka Rina, Das Subhabrata, Takahashi Shuntaro, Kawawaki Tokuhisa, Biswas Sourav, Negishi Yuichi
Research Institute for Science & Technology, Tokyo University of Science Tokyo 162-8601 Japan
Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan.
Chem Sci. 2025 Jan 22;16(6):2600-2608. doi: 10.1039/d4sc07730j. eCollection 2025 Feb 5.
The scarcity of approaches to assembling copper nanoclusters (Cu NCs) has restricted advancements in Cu NCs research, largely due to stability challenges of the individual NCs. By utilizing the structural adaptability of Cu NCs, we systematically investigate how variations in organic linkers and solvents affect the cluster node size, shape, and their assembling dimensionality. Here, we introduce a facile, one-pot synthesis method for obtaining a range of crystalline Cu cluster-assembled materials (CAMs) through a liquid-liquid interfacial crystallization technique. Our approach demonstrates that the electronic environment of linker molecules plays a crucial role in constructing the geometry of cluster nodes and the overall dimensionality of the framework. Solvent effects further influence the electronic environment of linkers, leading to tunable rearrangements in cluster node size and geometry. Additionally, coordination sites of the linker molecules and architectural properties significantly affect the overall dimensionality of the frameworks. Furthermore, correlations between solid-state photophysical properties and structural architecture expand the scope of this study, introducing the potential for tunable optical properties. We anticipate that this work will not only open avenues for designing novel Cu CAMs but also guide future research toward Cu-based materials with customizable optical features.
用于组装铜纳米团簇(Cu NCs)的方法稀缺,这在很大程度上限制了Cu NCs研究的进展,主要原因是单个纳米团簇存在稳定性挑战。通过利用Cu NCs的结构适应性,我们系统地研究了有机连接体和溶剂的变化如何影响团簇节点的尺寸、形状及其组装维度。在此,我们介绍一种简便的一锅合成方法,通过液-液界面结晶技术获得一系列结晶铜团簇组装材料(CAMs)。我们的方法表明,连接体分子的电子环境在构建团簇节点的几何结构和框架的整体维度方面起着关键作用。溶剂效应进一步影响连接体的电子环境,导致团簇节点尺寸和几何结构的可调重排。此外,连接体分子的配位位点和结构性质显著影响框架的整体维度。此外,固态光物理性质与结构架构之间的相关性扩展了本研究的范围,引入了可调光学性质的潜力。我们预计,这项工作不仅将为设计新型Cu CAMs开辟道路,还将引导未来对具有可定制光学特性的铜基材料的研究。