Wu You, Xie Lei
Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY, USA.
Ph.D. Program in Biology and Biochemistry, The Graduate Center, The City University of New York, New York, NY, USA.
Comput Struct Biotechnol J. 2025 Jan 2;27:265-277. doi: 10.1016/j.csbj.2024.12.030. eCollection 2025.
Despite the wealth of single-cell multi-omics data, it remains challenging to predict the consequences of novel genetic and chemical perturbations in the human body. It requires knowledge of molecular interactions at all biological levels, encompassing disease models and humans. Current machine learning methods primarily establish statistical correlations between genotypes and phenotypes but struggle to identify physiologically significant causal factors, limiting their predictive power. Key challenges in predictive modeling include scarcity of labeled data, generalization across different domains, and disentangling causation from correlation. In light of recent advances in multi-omics data integration, we propose a new artificial intelligence (AI)-powered biology-inspired multi-scale modeling framework to tackle these issues. This framework will integrate multi-omics data across biological levels, organism hierarchies, and species to predict genotype-environment-phenotype relationships under various conditions. AI models inspired by biology may identify novel molecular targets, biomarkers, pharmaceutical agents, and personalized medicines for presently unmet medical needs.
尽管有丰富的单细胞多组学数据,但预测人体中新型基因和化学扰动的后果仍然具有挑战性。这需要了解所有生物水平上的分子相互作用,包括疾病模型和人类。当前的机器学习方法主要在基因型和表型之间建立统计相关性,但难以识别具有生理意义的因果因素,限制了它们的预测能力。预测建模中的关键挑战包括标记数据的稀缺性、跨不同领域的泛化能力,以及从相关性中梳理出因果关系。鉴于多组学数据整合的最新进展,我们提出了一种新的由人工智能驱动的、受生物学启发的多尺度建模框架来解决这些问题。该框架将整合跨生物水平、生物层次结构和物种的多组学数据,以预测各种条件下的基因型-环境-表型关系。受生物学启发的人工智能模型可能会为目前未满足的医疗需求识别出新的分子靶点、生物标志物、药物制剂和个性化药物。