Suppr超能文献

深度学习重建对双能CT图像质量和肝脏病变可检测性的影响:一项体模研究

Impact of deep learning reconstructions on image quality and liver lesion detectability in dual-energy CT: An anthropomorphic phantom study.

作者信息

Pauthe Aurélie, Milliner Milan, Pasquier Hugo, Campagnolo Lucie, Mulé Sébastien, Luciani Alain

机构信息

Institut National des Sciences Appliquées, INSA, Toulouse, France.

Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France.

出版信息

Med Phys. 2025 Apr;52(4):2257-2268. doi: 10.1002/mp.17651. Epub 2025 Jan 30.

Abstract

BACKGROUND

Deep learning image reconstruction (DLIR) algorithms allow strong noise reduction while preserving noise texture, which may potentially improve hypervascular focal liver lesions.

PURPOSE

To assess the impact of DLIR on image quality (IQ) and detectability of simulated hypervascular hepatocellular carcinoma (HCC) in fast kV-switching dual-energy CT (DECT).

METHODS

An anthropomorphic phantom of a standard patient morphology (body mass index of 23 kg m) with customized liver, including mimickers of hypervascular lesions in both late arterial phase (AP) and portal venous phase (PVP) enhancement, was scanned on a DECT. Virtual monoenergetic images were reconstructed from raw data at four energy levels (40/50/60/70 keV) using filtered back-projection (FBP), adaptive statistical iterative reconstruction-V 50% and 100% (ASIRV-50 and ASIRV-100), DLIR low (DLIR-L), medium (DLIR-M), and high (DLIR-H). The contrast between the lesion and the liver parenchyma, the noise magnitude, the average and peak frequencies (f and f) of the noise power spectrum (NPS) reflecting noise texture, and the task-based measure of the modulation transfer function (MTF) were measured to evaluate spatial resolution. A detectability index (d') was computed to model the detection of hypervascular lesions in both AP and PVP. Metrics were compared between reconstructions and between energy levels using a Friedman test with follow-up post-hoc multiple comparison.

RESULTS

Lesion-to-liver contrast significantly increased with decreasing energy level in both AP and PVP (p ≤ 0.042) but was not affected by reconstruction algorithm (p ≥ 0.57). Overall, noise magnitude increased with decreasing energy levels and was the lowest with ASIRV-100 at all energy levels in both AP and PVP (p ≤ 0.01) and significantly lower with DLIR-M and DLIR-H reconstructions compared to ASIRV-50 and DLIR-L (p < 0.001). For all reconstructions, noise texture within the liver tended to get smoother with decreasing energy; f significantly shifted towards lower frequencies from 70 to 40 keV (p ≤ 0.01). Noise texture was the smoothest with ASIRV-100 (p < 0.001) while DLIR-L had the noise texture closer to the one of FBP. The spatial resolution was not significantly affected by the energy level, but it was degraded when increasing the level of ASIRV and DLIR. For all reconstructions, the detectability indices increased with decreasing energy levels and peaked at 40 and 50 keV in AP and PVP, respectively. In both AP and PVP, the highest d' values were observed with ASIRV-100 and DLIR-H, whatever the energy level studied (p ≤ 0.01) without statistical significance between those two reconstructions.

CONCLUSIONS

Compared to the routinely used level of iterative reconstruction, DLIR reduces noise without consequential noise texture modification, and may improve the detectability of hypervascular liver lesions while enabling the use of lower energy virtual monoenergetic images. The optimal energy level and DLIR level may depend on the lesion enhancement.

摘要

背景

深度学习图像重建(DLIR)算法在保留噪声纹理的同时可实现强效降噪,这可能会改善肝脏富血供局灶性病变的成像效果。

目的

评估在快速千伏切换双能CT(DECT)中,DLIR对图像质量(IQ)以及模拟肝脏富血供肝细胞癌(HCC)的可检测性的影响。

方法

使用DECT对具有标准患者形态(体重指数为23kg/m²)且肝脏定制的人体模型进行扫描,该模型在肝实质晚期动脉期(AP)和门静脉期(PVP)增强时均包含富血供病变模拟物。利用滤波反投影(FBP)、自适应统计迭代重建-V 50%和100%(ASIRV-50和ASIRV-100)、DLIR低(DLIR-L)、中(DLIR-M)和高(DLIR-H),从四个能量水平(40/50/60/70keV)的原始数据重建虚拟单能图像。测量病变与肝实质之间的对比度、噪声幅度、反映噪声纹理的噪声功率谱(NPS)的平均频率和峰值频率(f和f),以及基于任务的调制传递函数(MTF)测量值,以评估空间分辨率。计算可检测性指数(d'),以模拟AP和PVP中富血供病变的检测情况。使用Friedman检验及后续事后多重比较,比较不同重建方法之间以及不同能量水平之间的指标。

结果

在AP和PVP中,病变与肝脏的对比度均随能量水平降低而显著增加(p≤0.042),但不受重建算法的影响(p≥0.57)。总体而言,噪声幅度随能量水平降低而增加,在AP和PVP的所有能量水平下,ASIRV-100的噪声幅度最低(p≤0.01),与ASIRV-50和DLIR-L相比,DLIR-M和DLIR-H重建的噪声幅度显著更低(p<0.001)。对于所有重建方法,肝脏内的噪声纹理随能量降低而趋于更平滑;f从70keV到40keV显著向低频偏移(p≤0.01)。ASIRV-100的噪声纹理最平滑(p<0.001),而DLIR-L的噪声纹理最接近FBP。空间分辨率不受能量水平的显著影响,但随着ASIRV和DLIR水平的增加而降低。对于所有重建方法,可检测性指数随能量水平降低而增加,在AP和PVP中分别在40keV和50keV时达到峰值。在AP和PVP中,无论研究的能量水平如何,ASIRV-100和DLIR-H的d'值最高(p≤0.01),这两种重建方法之间无统计学差异。

结论

与常规使用的迭代重建水平相比,DLIR可降低噪声且不会对噪声纹理产生相应改变,在使用较低能量虚拟单能图像时,可能会提高肝脏富血供病变的可检测性。最佳能量水平和DLIR水平可能取决于病变的强化情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f230/11972042/7d6e70589da0/MP-52-2257-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验