Suppr超能文献

多读者多参数双能CT研究评估基于迭代和深度学习的不同强度图像重建技术。

Multi-reader multiparametric DECT study evaluating different strengths of iterative and deep learning-based image reconstruction techniques.

作者信息

Cao Jinjin, Mroueh Nayla, Lennartz Simon, Mercaldo Nathaniel D, Pisuchpen Nisanard, Kongboonvijit Sasiprang, Srinivas Rao Shravya, Yuenyongsinchai Kampon, Pierce Theodore T, Sertic Madeleine, Chung Ryan, Kambadakone Avinash R

机构信息

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA.

Institute for Diagnostic and Interventional Radiology, University Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany.

出版信息

Eur Radiol. 2025 Feb;35(2):885-896. doi: 10.1007/s00330-024-10974-3. Epub 2024 Jul 24.

Abstract

OBJECTIVES

To perform a multi-reader comparison of multiparametric dual-energy computed tomography (DECT) images reconstructed with deep-learning image reconstruction (DLIR) and standard-of-care adaptive statistical iterative reconstruction-V (ASIR-V).

METHODS

This retrospective study included 100 patients undergoing portal venous phase abdominal CT on a rapid kVp switching DECT scanner. Six reconstructed DECT sets (ASIR-V and DLIR, each at three strengths) were generated. Each DECT set included 65 keV monoenergetic, iodine, and virtual unenhanced (VUE) images. Using a Likert scale, three radiologists performed qualitative assessments for image noise, contrast, small structure visibility, sharpness, artifact, and image preference. Quantitative assessment was performed by measuring attenuation, image noise, and contrast-to-noise ratios (CNR). For the qualitative analysis, Gwet's AC2 estimates were used to assess agreement.

RESULTS

DECT images reconstructed with DLIR yielded better qualitative scores than ASIR-V images except for artifacts, where both groups were comparable. DLIR-H images were rated higher than other reconstructions on all parameters (p-value < 0.05). On quantitative analysis, there was no significant difference in the attenuation values between ASIR-V and DLIR groups. DLIR images had higher CNR values for the liver and portal vein, and lower image noise, compared to ASIR-V images (p-value < 0.05). The subgroup analysis of patients with large body habitus (weight ≥ 90 kg) showed similar results to the study population. Inter-reader agreement was good-to-very good overall.

CONCLUSION

Multiparametric post-processed DECT datasets reconstructed with DLIR were preferred over ASIR-V images with DLIR-H yielding the highest image quality scores.

CLINICAL RELEVANCE STATEMENT

Deep-learning image reconstruction in dual-energy CT demonstrated significant benefits in qualitative and quantitative image metrics compared to adaptive statistical iterative reconstruction-V.

KEY POINTS

Dual-energy CT (DECT) images reconstructed using deep-learning image reconstruction (DLIR) showed superior qualitative scores compared to adaptive statistical iterative reconstruction-V (ASIR-V) reconstructed images, except for artifacts where both reconstructions were rated comparable. While there was no significant difference in attenuation values between ASIR-V and DLIR groups, DLIR images showed higher contrast-to-noise ratios (CNR) for liver and portal vein, and lower image noise (p value < 0.05). Subgroup analysis of patients with large body habitus (weight ≥ 90 kg) yielded similar findings to the overall study population.

摘要

目的

对采用深度学习图像重建(DLIR)和标准护理自适应统计迭代重建-V(ASIR-V)重建的多参数双能计算机断层扫描(DECT)图像进行多阅片者比较。

方法

这项回顾性研究纳入了100例在快速千伏切换DECT扫描仪上进行门静脉期腹部CT检查的患者。生成了六组重建的DECT数据集(ASIR-V和DLIR,每组三种强度)。每组DECT数据集包括65keV单能、碘和虚拟平扫(VUE)图像。三位放射科医生使用李克特量表对图像噪声、对比度、小结构可见性、清晰度、伪影和图像偏好进行定性评估。通过测量衰减、图像噪声和对比度噪声比(CNR)进行定量评估。对于定性分析,使用Gwet's AC2估计值来评估一致性。

结果

除伪影方面两组相当外,DLIR重建的DECT图像定性评分优于ASIR-V图像。DLIR-H图像在所有参数上的评分均高于其他重建图像(p值<0.05)。在定量分析中,ASIR-V组和DLIR组的衰减值无显著差异。与ASIR-V图像相比,DLIR图像的肝脏和门静脉CNR值更高,图像噪声更低(p值<0.05)。对体型较大(体重≥90kg)患者的亚组分析结果与研究总体相似。阅片者之间的一致性总体良好至极优。

结论

与ASIR-V图像相比,DLIR重建的多参数后处理DECT数据集更受青睐,其中DLIR-H的图像质量评分最高。

临床相关性声明

与自适应统计迭代重建-V相比,双能CT中的深度学习图像重建在定性和定量图像指标方面显示出显著优势。

关键点

与自适应统计迭代重建-V(ASIR-V)重建图像相比,使用深度学习图像重建(DLIR)重建的双能CT(DECT)图像在定性评分上更优,除伪影方面两组评分相当。虽然ASIR-V组和DLIR组的衰减值无显著差异,但DLIR图像的肝脏和门静脉对比度噪声比(CNR)更高,图像噪声更低(p值<0.05)。对体型较大(体重≥90kg)患者的亚组分析结果与研究总体相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验