Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Heifei 230022, People's Republic of China.
Department of Radiology, Huainan Oriental Guangji Hospital, Huainan 232101, People's Republic of China.
J Digit Imaging. 2023 Dec;36(6):2347-2355. doi: 10.1007/s10278-023-00893-y. Epub 2023 Aug 14.
This study aimed to compare the performance of deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) in improving image quality and diagnostic performance using virtual monochromatic spectral images in abdominal dual-energy computed tomography (DECT). Sixty-two patients [mean age ± standard deviation (SD): 56 years ± 13; 30 men] who underwent abdominal DECT were prospectively included in this study. The 70-keV DECT images in the portal phase were reconstructed at 5-mm and 1.25-mm slice thicknesses with 40% ASIR-V (ASIR-V40%) and at 1.25-mm slice with deep learning image reconstruction at medium (DLIR-M) and high (DLIR-H) levels and then compared. Computed tomography (CT) attenuation, SD values, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured in the liver, spleen, erector spinae, and intramuscular fat. The lesions in each reconstruction group at 1.25-mm slice thickness were counted. The image quality and diagnostic confidence were subjectively evaluated by two radiologists using a 5-point scale. For the 1.25-mm images, DLIR-M and DLIR-H had lower SD, higher SNR and CNR, and better subjective image quality compared with ASIR-V40%; DLIR-H performed the best (all P values < 0.001). Furthermore, the 1.25-mm DLIR-H images had similar SD, SNR, and CNR values as the 5-mm ASIR-V40% images (all P > 0.05). Three image groups had similar lesion detection rates, but DLIR groups exhibited higher confidence in diagnosing lesions. Compared with ASIR-V40% at 70 keV, 70-keV DECT with DLIR-H further reduced image noise and improved image quality. Additionally, it improved diagnostic confidence while ensuring a consistent lesion detection rate of liver lesions.
本研究旨在比较深度学习图像重建(DLIR)和自适应统计迭代重建-Veo(ASIR-Veo)在提高腹部双能 CT(DECT)虚拟单能量谱图像质量和诊断性能方面的性能。前瞻性纳入 62 例腹部 DECT 患者(平均年龄±标准差:56 岁±13 岁;30 例男性)。门静脉期 70keV DECT 图像以 5mm 和 1.25mm 层厚重建,采用 40%ASIR-V(ASIR-V40%)和 1.25mm 层厚中(DLIR-M)和高(DLIR-H)水平的深度学习图像重建,然后进行比较。在肝脏、脾脏、竖脊肌和肌肉内脂肪中测量 CT 衰减、SD 值、信噪比(SNR)和对比噪声比(CNR)。在 1.25mm 层厚的每个重建组中计数病灶。两位放射科医生使用 5 分制对图像质量和诊断信心进行主观评估。对于 1.25mm 图像,与 ASIR-V40%相比,DLIR-M 和 DLIR-H 的 SD 更低,SNR 和 CNR 更高,主观图像质量更好;DLIR-H 表现最佳(所有 P 值均<0.001)。此外,1.25mm DLIR-H 图像的 SD、SNR 和 CNR 值与 5mm ASIR-V40%图像相似(所有 P 值均>0.05)。三组图像的病灶检出率相似,但 DLIR 组对病灶的诊断信心更高。与 70keV 的 ASIR-V40%相比,70keV 的 DECT 与 DLIR-H 联合应用可进一步降低图像噪声,提高图像质量。此外,在保证肝脏病变检出率一致的同时,还提高了诊断信心。