Suppr超能文献

一种深度学习图像重建算法,用于提高腹部双能 CT 中图像质量和肝脏病变检测能力:初步结果。

A Deep Learning Image Reconstruction Algorithm for Improving Image Quality and Hepatic Lesion Detectability in Abdominal Dual-Energy Computed Tomography: Preliminary Results.

机构信息

Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Heifei 230022, People's Republic of China.

Department of Radiology, Huainan Oriental Guangji Hospital, Huainan 232101, People's Republic of China.

出版信息

J Digit Imaging. 2023 Dec;36(6):2347-2355. doi: 10.1007/s10278-023-00893-y. Epub 2023 Aug 14.

Abstract

This study aimed to compare the performance of deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) in improving image quality and diagnostic performance using virtual monochromatic spectral images in abdominal dual-energy computed tomography (DECT). Sixty-two patients [mean age ± standard deviation (SD): 56 years ± 13; 30 men] who underwent abdominal DECT were prospectively included in this study. The 70-keV DECT images in the portal phase were reconstructed at 5-mm and 1.25-mm slice thicknesses with 40% ASIR-V (ASIR-V40%) and at 1.25-mm slice with deep learning image reconstruction at medium (DLIR-M) and high (DLIR-H) levels and then compared. Computed tomography (CT) attenuation, SD values, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured in the liver, spleen, erector spinae, and intramuscular fat. The lesions in each reconstruction group at 1.25-mm slice thickness were counted. The image quality and diagnostic confidence were subjectively evaluated by two radiologists using a 5-point scale. For the 1.25-mm images, DLIR-M and DLIR-H had lower SD, higher SNR and CNR, and better subjective image quality compared with ASIR-V40%; DLIR-H performed the best (all P values < 0.001). Furthermore, the 1.25-mm DLIR-H images had similar SD, SNR, and CNR values as the 5-mm ASIR-V40% images (all P > 0.05). Three image groups had similar lesion detection rates, but DLIR groups exhibited higher confidence in diagnosing lesions. Compared with ASIR-V40% at 70 keV, 70-keV DECT with DLIR-H further reduced image noise and improved image quality. Additionally, it improved diagnostic confidence while ensuring a consistent lesion detection rate of liver lesions.

摘要

本研究旨在比较深度学习图像重建(DLIR)和自适应统计迭代重建-Veo(ASIR-Veo)在提高腹部双能 CT(DECT)虚拟单能量谱图像质量和诊断性能方面的性能。前瞻性纳入 62 例腹部 DECT 患者(平均年龄±标准差:56 岁±13 岁;30 例男性)。门静脉期 70keV DECT 图像以 5mm 和 1.25mm 层厚重建,采用 40%ASIR-V(ASIR-V40%)和 1.25mm 层厚中(DLIR-M)和高(DLIR-H)水平的深度学习图像重建,然后进行比较。在肝脏、脾脏、竖脊肌和肌肉内脂肪中测量 CT 衰减、SD 值、信噪比(SNR)和对比噪声比(CNR)。在 1.25mm 层厚的每个重建组中计数病灶。两位放射科医生使用 5 分制对图像质量和诊断信心进行主观评估。对于 1.25mm 图像,与 ASIR-V40%相比,DLIR-M 和 DLIR-H 的 SD 更低,SNR 和 CNR 更高,主观图像质量更好;DLIR-H 表现最佳(所有 P 值均<0.001)。此外,1.25mm DLIR-H 图像的 SD、SNR 和 CNR 值与 5mm ASIR-V40%图像相似(所有 P 值均>0.05)。三组图像的病灶检出率相似,但 DLIR 组对病灶的诊断信心更高。与 70keV 的 ASIR-V40%相比,70keV 的 DECT 与 DLIR-H 联合应用可进一步降低图像噪声,提高图像质量。此外,在保证肝脏病变检出率一致的同时,还提高了诊断信心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fab/10584787/0d447b2af445/10278_2023_893_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验