Jing Zhongxin, Mamoor Muhammad, Kong Lingtong, Wang Lu, Wang Bin, Chen Ming, Wang Fengbo, Qu Guangmeng, Kong Yueyue, Wang Dedong, He Xiyu, Wang Chang, Zhang Xintong, Zhang Yufei, Wang Gang, Xu Liqiang
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
School of Physics and National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, 250100, China.
Angew Chem Int Ed Engl. 2025 Apr 7;64(15):e202423356. doi: 10.1002/anie.202423356. Epub 2025 Feb 9.
Understanding the relationship between structure regulation and electrochemical performance is key to developing efficient and sustainable sodium-ion batteries (SIBs) materials. Herein, seven Cobalt-M-based (M=V, Mn, Fe, Co, Ni, Cu, Zn) Prussian blue analogues (CoM-PBAs) are designed as anodes for SIBs via a universal low-energy co-precipitation approach with the strategic inclusion of 3d transition metals. Density Functional Theory (DFT) simulation and experimental validation reveal that a moderate p-band center of cyanide linkages (-CN-) is more favorable for Na intercalation and diffusion, while the d-band center of metal cations is linearly related to electrode stability. Among seven CoM-based PBAs, CoV-PBAs possess the best sodium-ion adsorption/diffusion kinetics and overall cycling performance, including high specific capacity (565 mAh/g at 0.1 A/g), cycling stability (over 15000 cycles with 97.7 % capacity retention), and superior rate capability (174.7 mAh/g at 30 A/g). In situ/ex situ techniques further demonstrate that the π-electron regulation by V introduction enhances the reversibility and kinetics of redox reactions. Moreover, the study identified the "p-band center" and "d-band center" may serve as key descriptors for quantifying the capability and stability of other-type bimetal Co-based anodes (oxides, phosphides, sulfides, and selenides) with similar theoretical capacity, offering a potentially transformative approach for selecting practical SIB electrode materials.
理解结构调控与电化学性能之间的关系是开发高效且可持续的钠离子电池(SIBs)材料的关键。在此,通过一种通用的低能量共沉淀方法,并战略性地引入3d过渡金属,设计了七种钴 - M基(M = V、Mn、Fe、Co、Ni、Cu、Zn)普鲁士蓝类似物(CoM - PBAs)作为SIBs的阳极。密度泛函理论(DFT)模拟和实验验证表明,氰基键(-CN-)适度的p带中心更有利于钠离子的嵌入和扩散,而金属阳离子的d带中心与电极稳定性呈线性相关。在七种CoM基PBAs中,CoV - PBAs具有最佳的钠离子吸附/扩散动力学和整体循环性能,包括高比容量(在0.1 A/g时为565 mAh/g)、循环稳定性(超过15000次循环,容量保持率为97.7%)以及优异的倍率性能(在30 A/g时为174.7 mAh/g)。原位/非原位技术进一步证明,通过引入V进行的π电子调控增强了氧化还原反应的可逆性和动力学。此外,该研究确定“p带中心”和“d带中心”可作为量化具有相似理论容量的其他类型双金属钴基阳极(氧化物、磷化物、硫化物和硒化物)的性能和稳定性的关键描述符,为选择实用的SIB电极材料提供了一种潜在的变革性方法。