Russo Mirella, Nardini Davide, Melchiorre Sara, Ciprietti Consuelo, Polito Gaetano, Punzi Miriam, Dono Fedele, Santilli Matteo, Thomas Astrid, Sensi Stefano L
Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
Institute of Neurology, "SS. Annunziata Hospital,", ASL Lanciano-Vasto-Chieti, Chieti, Italy.
Alzheimers Dement. 2025 Feb;21(2):e14398. doi: 10.1002/alz.14398. Epub 2025 Jan 30.
Machine learning (ML) helps diagnose the mild cognitive impairment-Alzheimer's disease (MCI-AD) spectrum. However, ML is fed with data unavailable in standard clinical practice. Thus, we tested a novel multi-step ML approach to predict cognitive worsening.
We selected cognitively normal and MCI participants from the Alzheimer's Disease Neuroimaging Initiative dataset and categorized them on total tau/amyloid beta 1-42 ratios. ML was applied to predict the 3-year conversion with standard clinical data (SCD), assess the model's accuracy, and identify the role of cerebrospinal fluid (CSF) biomarkers in this approach. Shapley Additive Explanations (SHAP) analysis was carried out to explore the automated decisional process.
The model achieved 84% accuracy across the entire cohort, 86% in patients with negative CSF, and 88% in individuals with AD-like CSF. SHAP analysis identified differences between CSF-positive and -negative patients in predictors of conversion and cut-offs.
The approach yielded good prediction accuracy using SCD. However, CSF-based categorizations are needed to improve predictive accuracy.
Machine learning algorithms can predict cognitive decline with standard and routinely used clinical data. Classification according to cerebrospinal fluid biomarkers enhances prediction accuracy. Different cut-offs could be applied to neuropsychological tests to predict conversion.
机器学习(ML)有助于诊断轻度认知障碍-阿尔茨海默病(MCI-AD)谱系。然而,机器学习所使用的数据在标准临床实践中无法获取。因此,我们测试了一种新颖的多步骤机器学习方法来预测认知功能恶化。
我们从阿尔茨海默病神经影像学倡议数据集选取认知正常和MCI参与者,并根据总tau蛋白/β淀粉样蛋白1-42比率对他们进行分类。运用机器学习,利用标准临床数据(SCD)预测3年转化率,评估模型准确性,并确定脑脊液(CSF)生物标志物在此方法中的作用。进行了Shapley加性解释(SHAP)分析以探索自动决策过程。
该模型在整个队列中的准确率达到84%,脑脊液阴性患者中为86%,脑脊液呈阿尔茨海默病样的个体中为88%。SHAP分析确定了脑脊液阳性和阴性患者在转化率预测指标和临界值方面的差异。
该方法使用SCD可产生良好的预测准确性。然而,需要基于脑脊液的分类来提高预测准确性。
机器学习算法可以使用标准且常规使用的临床数据预测认知衰退。根据脑脊液生物标志物进行分类可提高预测准确性。不同的临界值可应用于神经心理学测试以预测转化率。