文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Statistical optimisation and analysis of biomass and exopolysaccharide production by Lacticaseibacillus rhamnosus LRH30.

作者信息

Copeland Helena Mylise, Maye Susan, MacLeod George, Brabazon Dermot, Loscher Christine, Freeland Brian

机构信息

School of Biotechnology, Dublin City University, Dublin, D9, Ireland.

I-Form, Advanced Manufacturing Research Centre, Dublin City University, Dublin, D9, Ireland.

出版信息

World J Microbiol Biotechnol. 2025 Jan 31;41(2):58. doi: 10.1007/s11274-025-04273-2.


DOI:10.1007/s11274-025-04273-2
PMID:39888560
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11785610/
Abstract

Exopolysaccharides (EPS) produced by lactic acid bacteria with immunomodulatory potential are promising natural food additives. This study employs small-scale, 250 mL bioreactors combined with a central composite design to optimise two important bioprocess parameters, namely temperature and airflow, to achieve high yields of biomass and EPS from Lacticaseibacillus rhamnosus LRH30 (L. rhamnosus LRH30). A quadratic model was determined to be the best fit for the production of both products. The optimum critical process parameters for maximised biomass were identified to be 37.01 °C with an airflow of 0.12 vvm, while optimum criteria was 20.1 °C with an airflow of 0.18 vvm for maximum EPS production. Under these optimized conditions, small-scale batch experiments yielded a biomass concentration of 10.1 g/L and an EPS yield of 520.2 mg/L. In comparison, scale-up experiments in 2L reactors resulted in a biomass concentration of 8.54 g/L (a reduction of 18%) and an EPS yield of 654.6 mg/L (an increase of 26%). The produced EPS was purified and characterised through Fourier transform infrared spectroscopy and showed characteristic peaks associated with polysaccharides. The immunomodulatory potential of the L. rhamnosus LRH30 cells and EPS was evaluated through cytokine and chemokine secretion in a J774A.1 murine macrophage, resulting in a predominantly anti-inflammatory effect of L. rhamnosus LRH30 and EPS.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/4f8e740970b6/11274_2025_4273_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/7ab76880d78b/11274_2025_4273_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/64acb09129db/11274_2025_4273_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/0e2946bd7a8d/11274_2025_4273_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/3576de22330a/11274_2025_4273_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/3bff0437c825/11274_2025_4273_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/956accdd0158/11274_2025_4273_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/32b6ac498ce1/11274_2025_4273_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/a18785c608d1/11274_2025_4273_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/cc6ca897fb51/11274_2025_4273_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/0b6eddbf83ae/11274_2025_4273_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/4f8e740970b6/11274_2025_4273_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/7ab76880d78b/11274_2025_4273_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/64acb09129db/11274_2025_4273_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/0e2946bd7a8d/11274_2025_4273_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/3576de22330a/11274_2025_4273_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/3bff0437c825/11274_2025_4273_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/956accdd0158/11274_2025_4273_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/32b6ac498ce1/11274_2025_4273_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/a18785c608d1/11274_2025_4273_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/cc6ca897fb51/11274_2025_4273_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/0b6eddbf83ae/11274_2025_4273_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/11785610/4f8e740970b6/11274_2025_4273_Fig11_HTML.jpg

相似文献

[1]
Statistical optimisation and analysis of biomass and exopolysaccharide production by Lacticaseibacillus rhamnosus LRH30.

World J Microbiol Biotechnol. 2025-1-31

[2]
Optimization of culture conditions for exopolysaccharide production by a probiotic strain of Lactobacillus rhamnosus E/N.

Pol J Microbiol. 2014

[3]
Immunoregulatory potential of exopolysaccharide from Lactobacillus rhamnosus KL37: effects on the production of inflammatory mediators by mouse macrophages.

Int J Exp Pathol. 2011-9-22

[4]
Structural characteristics of Lacticaseibacillus rhamnosus ACS5 exopolysaccharide in association with its antioxidant and antidiabetic activity in vitro.

Int J Biol Macromol. 2024-11

[5]
Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M.

J Appl Microbiol. 2005

[6]
Statistical Optimization of Novel Medium to Maximize the Yield of Exopolysaccharide From ZFM216 and Its Immunomodulatory Activity.

Front Nutr. 2022-6-2

[7]
Optimization of Media Composition to Maximize the Yield of Exopolysaccharides Production by Lactobacillus rhamnosus Strains.

Probiotics Antimicrob Proteins. 2020-6

[8]
Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M.

J Appl Microbiol. 2003

[9]
Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages.

J Appl Microbiol. 2009-6-30

[10]
Exopolysaccharide from Lactobacillus rhamnosus KL37 Inhibits T Cell-dependent Immune Response in Mice.

Arch Immunol Ther Exp (Warsz). 2020-5-25

本文引用的文献

[1]
Bioactive Ingredients from Dairy-Based Lactic Acid Bacterial Fermentations for Functional Food Production and Their Health Effects.

Nutrients. 2023-11-11

[2]
Steps toward a digital twin for functional food production with increased health benefits.

Curr Res Food Sci. 2023-9-26

[3]
Optimization and Scale-Up of Fermentation Processes Driven by Models.

Bioengineering (Basel). 2022-9-14

[4]
Exopolysaccharides of Lactic Acid Bacteria: Production, Purification and Health Benefits towards Functional Food.

Nutrients. 2022-7-18

[5]
Physicochemical Properties of Extracellular Polymeric Substances Produced by Three Bacterial Isolates From Biofouled Reverse Osmosis Membranes.

Front Microbiol. 2021-7-13

[6]
Isolation and functional characterization of exopolysaccharide produced by Lactobacillus plantarum S123 isolated from traditional Chinese cheese.

Arch Microbiol. 2021-8

[7]
Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications.

AIMS Microbiol. 2020-11-17

[8]
Exopolysaccharides from Lactobacillus plantarum YW11 improve immune response and ameliorate inflammatory bowel disease symptoms.

Acta Biochim Pol. 2020-12-17

[9]
Fermented foods in a global age: East meets West.

Compr Rev Food Sci Food Saf. 2020-1

[10]
Milk fermented with R0011 induces a regulatory cytokine profile in LPS-challenged U937 and THP-1 macrophages.

Curr Res Food Sci. 2020-2-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索