Han Xuewen, Hao Cheng, Peng Yukang, Yu Han, Zhang Tao, Zhang Haonan, Chen Kaiwen, Chen Heyu, Wang Zhenxing, Yan Ning, Pu Junwen
Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S3E5, Canada.
Nanomicro Lett. 2025 Jan 31;17(1):122. doi: 10.1007/s40820-025-01652-0.
In an era where technological advancement and sustainability converge, developing renewable materials with multifunctional integration is increasingly in demand. This study filled a crucial gap by integrating energy storage, multi-band electromagnetic interference (EMI) shielding, and structural design into bio-based materials. Specifically, conductive polymer layers were formed within the 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO)-oxidized cellulose fiber skeleton, where a mild TEMPO-mediated oxidation system was applied to endow it with abundant macropores that could be utilized as active sites (specific surface area of 105.6 m g). Benefiting from the special hierarchical porous structure of the material, the constructed cellulose fiber-derived composites can realize high areal-specific capacitance of 12.44 F cm at 5 mA cm and areal energy density of 3.99 mWh cm (2005 mW cm) with an excellent stability of maintaining 90.23% after 10,000 cycles at 50 mA cm. Meanwhile, the composites showed a high electrical conductivity of 877.19 S m and excellent EMI efficiency (> 99.99%) in multiple wavelength bands. The composite material's EMI values exceed 100 dB across the L, S, C, and X bands, effectively shielding electromagnetic waves in daily life. The proposed strategy paves the way for utilizing bio-based materials in applications like energy storage and EMI shielding, contributing to a more sustainable future.
在一个技术进步与可持续发展相融合的时代,开发具有多功能集成的可再生材料的需求日益增长。本研究通过将能量存储、多频段电磁干扰(EMI)屏蔽和结构设计集成到生物基材料中,填补了一个关键空白。具体而言,在2,2,6,6-四甲基哌啶-1-氧化物(TEMPO)氧化纤维素纤维骨架内形成导电聚合物层,其中应用温和的TEMPO介导氧化系统赋予其丰富的大孔,可作为活性位点(比表面积为105.6 m²/g)。受益于材料特殊的分级多孔结构,构建的纤维素纤维基复合材料在5 mA/cm²时可实现12.44 F/cm²的高面积比电容和3.99 mWh/cm²(2005 μW/cm²)的面积能量密度,在50 mA/cm²下进行10000次循环后具有90.23%的优异稳定性。同时,该复合材料在多个波长带显示出877.19 S/m的高电导率和优异的EMI效率(>99.99%)。该复合材料在L、S、C和X波段的EMI值均超过100 dB,有效屏蔽日常生活中的电磁波。所提出的策略为在能量存储和EMI屏蔽等应用中利用生物基材料铺平了道路,为更可持续的未来做出贡献。