Zhang Shuo, Liu Xuehua, Jia Chenyu, Sun Zhengshuo, Jiang Haowen, Jia Zirui, Wu Guanglei
Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
Nanomicro Lett. 2023 Aug 25;15(1):204. doi: 10.1007/s40820-023-01179-2.
The development of wearable multifunctional electromagnetic protective fabrics with multifunctional, low cost, and high efficiency remains a challenge. Here, inspired by the unique flower branch shape of "Thunberg's meadowsweet" in nature, a nanofibrous composite membrane with hierarchical structure was constructed. Integrating sophisticated 0D@2D@1D hierarchical structures with multiple heterointerfaces can fully unleash the multifunctional application potential of composite membrane. The targeted induction method was used to precisely regulate the formation site and morphology of the metal-organic framework precursor, and intelligently integrate multiple heterostructures to enhance dielectric polarization, which improves the impedance matching and loss mechanisms of the electromagnetic wave absorbing materials. Due to the synergistic enhancement of electrospinning-derived carbon nanofiber "stems", MOF-derived carbon nanosheet "petals" and transition metal selenide nano-particle "stamens", the CoSe/NiSe@CNSs@CNFs (CNCC) composite membrane obtains a minimum reflection loss value (RL) of -68.40 dB at 2.6 mm and a maximum effective absorption bandwidth (EAB) of 8.88 GHz at a thin thickness of 2.0 mm with a filling amount of only 5 wt%. In addition, the multi-component and hierarchical heterostructure endow the fibrous membrane with excellent flexibility, water resistance, thermal management, and other multifunctional properties. This work provides unique perspectives for the precise design and rational application of multifunctional fabrics.
开发具有多功能、低成本和高效率的可穿戴多功能电磁防护织物仍然是一项挑战。在此,受自然界中“唐松草”独特的花枝形状启发,构建了一种具有分级结构的纳米纤维复合膜。将具有多个异质界面的复杂0D@2D@1D分级结构整合在一起,可以充分释放复合膜的多功能应用潜力。采用靶向诱导方法精确调控金属有机框架前驱体的形成位点和形态,并智能整合多种异质结构以增强介电极化,从而改善电磁波吸收材料的阻抗匹配和损耗机制。由于静电纺丝衍生的碳纳米纤维“茎”、金属有机框架衍生的碳纳米片“花瓣”和过渡金属硒化物纳米颗粒“雄蕊”的协同增强作用,CoSe/NiSe@CNSs@CNFs(CNCC)复合膜在2.6毫米处获得了-68.40 dB的最小反射损耗值(RL),在2.0毫米的薄厚度下,填充量仅为5 wt%时,最大有效吸收带宽(EAB)为8.88 GHz。此外,多组分和分级异质结构赋予纤维膜优异的柔韧性、耐水性、热管理等多功能性能。这项工作为多功能织物的精确设计和合理应用提供了独特的视角。