Suppr超能文献

ECM-YOLO:一种基于多尺度卷积的钢表面缺陷实时检测方法

ECM-YOLO: a real-time detection method of steel surface defects based on multiscale convolution.

作者信息

Yan Chunman, Xu Ee

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2024 Oct 1;41(10):1905-1914. doi: 10.1364/JOSAA.533407.

Abstract

Steel surface defects, characterized by multiple types, varied scales, and overlapping occurrences, directly impact the quality, performance, and reliability of industrial products. Proposing a high-precision and high-speed steel surface defect detection algorithm is crucial for ensuring product quality. In this regard, this paper introduces ECM-YOLO, a detection network based on YOLOv8n. First, addressing the insufficient information capture of the C2f module, the C2f enhanced multiscale convolution processing (C2f_EMSCP) module is proposed, enhancing global and local feature capture capabilities through multiscale convolutions. Second, to further enhance the network's robustness and focus on critical information, the channel prior convolutional attention (CPCA) mechanism is integrated between the backbone and neck networks to facilitate more efficient information transmission. Last, a novel, to the best of our knowledge, detection head, i.e., multiscale simple and efficient anchor matching head (MultiSEAMHead), is proposed to mitigate accuracy issues arising from overlaps between different types of defects. Experimental results demonstrate that ECM-YOLO achieves mAPs of 78.9% and 68.2% on the NEU-DET and GC 10-DET data sets, respectively, outperforming YOLOv8n by 2.5% and 4.4%. Moreover, ECM-YOLO excels in model parameters, computational efficiency, and inference speed compared with other models. These findings highlight the applicability of ECM-YOLO for real-time defect detection in industrial settings.

摘要

钢材表面缺陷具有类型多样、尺度各异、相互重叠等特点,直接影响工业产品的质量、性能和可靠性。提出一种高精度、高速的钢材表面缺陷检测算法对于确保产品质量至关重要。在这方面,本文介绍了ECM-YOLO,一种基于YOLOv8n的检测网络。首先,针对C2f模块信息捕获不足的问题,提出了C2f增强多尺度卷积处理(C2f_EMSCP)模块,通过多尺度卷积增强全局和局部特征捕获能力。其次,为进一步提高网络的鲁棒性并聚焦关键信息,在主干网络和颈部网络之间集成了通道先验卷积注意力(CPCA)机制,以促进更高效的信息传输。最后,提出了一种新颖的(据我们所知)检测头,即多尺度简单高效锚点匹配头(MultiSEAMHead),以缓解不同类型缺陷重叠引起的精度问题。实验结果表明,ECM-YOLO在NEU-DET和GC 10-DET数据集上分别达到了78.9%和68.2%的平均精度均值(mAP),比YOLOv8n分别高出2.5%和4.4%。此外,与其他模型相比,ECM-YOLO在模型参数、计算效率和推理速度方面表现出色。这些发现凸显了ECM-YOLO在工业环境中进行实时缺陷检测的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验