Li Yanshun, Xu Shuobo, Zhu Zhenfang, Wang Peng, Li Kefeng, He Qiang, Zheng Quanfeng
School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China.
Sensors (Basel). 2023 Sep 2;23(17):7619. doi: 10.3390/s23177619.
The pursuit of higher recognition accuracy and speed with smaller model sizes has been a major research topic in the detection of surface defects in steel. In this paper, we propose an improved high-speed and high-precision Efficient Fusion Coordination network (EFC-YOLO) without increasing the model's size. Since modifications to enhance feature extraction in shallow networks tend to affect the speed of model inference, in order to simultaneously ensure the accuracy and speed of detection, we add the improved Fusion-Faster module to the backbone network of YOLOv7. Partial Convolution (PConv) serves as the basic operator of the module, which strengthens the feature-extraction ability of shallow networks while maintaining speed. Additionally, we incorporate the Shortcut Coordinate Attention (SCA) mechanism to better capture the location information dependency, considering both lightweight design and accuracy. The de-weighted Bi-directional Feature Pyramid Network (BiFPN) structure used in the neck part of the network improves the original Path Aggregation Network (PANet)-like structure by adding step branches and reducing computations, achieving better feature fusion. In the experiments conducted on the NEU-DET dataset, the final model achieved an 85.9% mAP and decreased the GFLOPs by 60%, effectively balancing the model's size with the accuracy and speed of detection.
在钢材表面缺陷检测中,追求更高的识别准确率和速度,同时减小模型尺寸,一直是一个主要的研究课题。在本文中,我们提出了一种改进的高速高精度高效融合协作网络(EFC-YOLO),且不增加模型尺寸。由于对浅层网络进行增强特征提取的修改往往会影响模型推理速度,为了同时确保检测的准确性和速度,我们在YOLOv7的主干网络中添加了改进的融合更快模块。部分卷积(PConv)作为该模块的基本算子,在保持速度的同时增强了浅层网络的特征提取能力。此外,考虑到轻量化设计和准确性,我们引入了捷径坐标注意力(SCA)机制,以更好地捕捉位置信息依赖性。网络颈部使用的去权重双向特征金字塔网络(BiFPN)结构通过添加步长分支和减少计算量改进了原始的类似路径聚合网络(PANet)的结构,实现了更好的特征融合。在NEU-DET数据集上进行的实验中,最终模型实现了85.9%的平均精度均值(mAP),并将每秒浮点运算次数(GFLOPs)降低了60%,有效地平衡了模型尺寸与检测的准确性和速度。