Suppr超能文献

一种通过对全视图正弦图和图像进行交替优化实现稀疏视图CT重建的高效深度展开网络。

An efficient deep unrolling network for sparse-view CT reconstruction via alternating optimization of dense-view sinograms and images.

作者信息

Sun Chang, Liu Yitong, Yang Hongwen

机构信息

School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China.

出版信息

Phys Med Biol. 2025 Jan 15;70(2). doi: 10.1088/1361-6560/ad9dac.

Abstract

. Recently, there have been many advancements in deep unrolling methods for sparse-view computed tomography (SVCT) reconstruction. These methods combine model-based and deep learning-based reconstruction techniques, improving the interpretability and achieving significant results. However, they are often computationally expensive, particularly for clinical raw projection data with large sizes. This study aims to address this issue while maintaining the quality of the reconstructed image.. The SVCT reconstruction task is decomposed into two subproblems using the proximal gradient method: optimizing dense-view sinograms and optimizing images. Then dense-view sinogram inpainting, image-residual learning, and image-refinement modules are performed at each iteration stage using deep neural networks. Unlike previous unrolling methods, the proposed method focuses on optimizing dense-view sinograms instead of full-view sinograms. This approach not only reduces computational resources and runtime but also minimizes the challenge for the network to perform sinogram inpainting when the sparse ratio is extremely small, thereby decreasing the propagation of estimation error from the sinogram domain to the image domain.. The proposed method successfully reconstructs an image (512 × 512 pixels) from real-size (2304 × 736) projection data, with 3.39 M training parameters and an inference time of 0.09 s per slice on a GPU. The proposed method also achieves superior quantitative and qualitative results compared with state-of-the-art deep unrolling methods on datasets with sparse ratios of 1/12 and 1/18, especially in suppressing artifacts and preserving structural details. Additionally, results show that using dense-view sinogram inpainting not only accelerates the computational speed but also leads to faster network convergence and further improvements in reconstruction results.. This research presents an efficient dual-domain deep unrolling technique that produces excellent results in SVCT reconstruction while requiring small computational resources. These findings have important implications for speeding up deep unrolling CT reconstruction methods and making them more practical for processing clinical CT projection data.

摘要

近年来,用于稀疏视图计算机断层扫描(SVCT)重建的深度展开方法取得了许多进展。这些方法结合了基于模型和基于深度学习的重建技术,提高了可解释性并取得了显著成果。然而,它们通常计算成本高昂,特别是对于大尺寸的临床原始投影数据。本研究旨在解决这一问题,同时保持重建图像的质量。

使用近端梯度法将SVCT重建任务分解为两个子问题:优化密集视图正弦图和优化图像。然后在每个迭代阶段使用深度神经网络执行密集视图正弦图修复、图像残差学习和图像细化模块。与以前的展开方法不同,所提出的方法侧重于优化密集视图正弦图而不是全视图正弦图。这种方法不仅减少了计算资源和运行时间,而且在稀疏率极小的情况下,将网络执行正弦图修复的挑战降至最低,从而减少了估计误差从正弦图域到图像域的传播。

所提出的方法成功地从实际尺寸(2304×736)的投影数据重建了一幅图像(512×512像素),在GPU上有339万个训练参数,每切片推理时间为0.09秒。在稀疏率为1/12和1/18的数据集上,与现有最先进的深度展开方法相比,所提出的方法还取得了优异的定量和定性结果,特别是在抑制伪影和保留结构细节方面。此外,结果表明,使用密集视图正弦图修复不仅加快了计算速度,而且导致网络更快收敛,并进一步改善了重建结果。

本研究提出了一种高效的双域深度展开技术,该技术在SVCT重建中产生了优异的结果,同时需要较少的计算资源。这些发现对于加速深度展开CT重建方法并使其在处理临床CT投影数据方面更具实用性具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验