Suppr超能文献

光激活后荧光损失(FLAPh):一种用于理解病毒包涵体动力学和动态变化的脉冲追踪细胞分析方法。

Fluorescence Loss After Photoactivation (FLAPh): A Pulse-Chase Cellular Assay for Understanding Kinetics and Dynamics of Viral Inclusions.

作者信息

Etibor Temitope Akhigbe, Paixão Tiago, Amorim Maria João

机构信息

Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC) - Fundação Calouste Gulbenkian, Oeiras, Portugal.

Molecular Medicine Lab, Institute of Pharmaceutical Chemistry (IPW), ETH Zurich, Zurich, Switzerland.

出版信息

Methods Mol Biol. 2025;2890:125-140. doi: 10.1007/978-1-0716-4326-6_6.

Abstract

Influenza A virus (IAV) relies on host cellular machinery for replication. Upon infection, the eight genomic segments, independently packed as viral ribonucleoproteins (vRNPs), are released into the cytosol before nuclear import for viral replication. After nucleocytoplasmic transport, the resulting progeny vRNPs reach the cytosol, accumulating in highly mobile and dynamic viral inclusions that display liquid properties. Being sites postulated to support IAV genome assembly, the biophysical properties of IAV inclusions may be critical for function. In agreement, imposing liquid-to-solid transitions was demonstrated to impact viral replication negatively. Therefore, screening for host factors or compounds able to alter the material properties may provide the molecular basis for how influenza genomic complex forms as well as identify novel antivirals. Conventional techniques employed to investigate biomolecular condensates' material properties include fluorescence correlation spectroscopy, raster image correlation spectroscopy, single molecule or microrheology particle tracking, and Fluorescence Recovery After Photobleaching (FRAP). These approaches allow measuring molecular dynamics in systems that do not move very much. However, the analysis of highly mobile intracellular condensates, such as IAV inclusions, poses significant challenges as these structures not only constantly move within the cell but also exchange material, fusing, and dividing, rendering the quantitation of internal rearrangements and diffusion coefficients of molecules within condensates inaccurate. As an alternative, we opted for measuring the kinetics and the exchange of material between IAV inclusions using the Fluorescence Loss After Photoactivation (FLAPh) technique. It involves pulse photoactivation of individual or pools of viral inclusions in the cell, and chasing over time in photoactivated and non-photoactivated regions. This approach is suitable for quantifying the movement and spatial distribution of components within inclusions over time, enabling the determination of both the distance and speed from a specific cellular location. As a result, this method allows the quantification of decay profiles, half-lives, decay constant rate, and mobile and immobile fractions in viral inclusions. It, therefore, enables high throughput screenings for compounds or host factors that affect this dynamism and indirectly allows assessing the material properties of IAV inclusions.

摘要

甲型流感病毒(IAV)依靠宿主细胞机制进行复制。感染后,八个基因组片段独立包装成病毒核糖核蛋白(vRNP),在核输入进行病毒复制之前释放到细胞质中。核质运输后,产生的子代vRNP到达细胞质,积聚在具有液体特性的高度移动和动态的病毒包涵体中。作为假定支持IAV基因组组装的位点,IAV包涵体的生物物理特性可能对其功能至关重要。与此一致的是,施加从液体到固体的转变被证明会对病毒复制产生负面影响。因此,筛选能够改变物质特性的宿主因子或化合物可能为流感基因组复合物如何形成提供分子基础,并确定新型抗病毒药物。用于研究生物分子凝聚物物质特性的传统技术包括荧光相关光谱法、光栅图像相关光谱法、单分子或微流变粒子追踪以及光漂白后荧光恢复(FRAP)。这些方法能够测量在移动很少的系统中的分子动力学。然而,分析高度移动的细胞内凝聚物,如IAV包涵体,带来了重大挑战,因为这些结构不仅在细胞内不断移动,还会进行物质交换、融合和分裂,使得对凝聚物内部分子重排和扩散系数的定量不准确。作为替代方法,我们选择使用光激活后荧光损失(FLAPh)技术来测量IAV包涵体之间的物质动力学和交换。它涉及对细胞中单个或一组病毒包涵体进行脉冲光激活,并在光激活和未光激活区域随时间追踪。这种方法适用于随时间量化包涵体内成分的移动和空间分布,能够确定从特定细胞位置的距离和速度。因此,这种方法可以量化病毒包涵体中的衰减曲线、半衰期、衰减常数率以及移动和固定部分。因此,它能够对影响这种动态性的化合物或宿主因子进行高通量筛选,并间接评估IAV包涵体的物质特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验