College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China.
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
Anal Chem. 2022 Apr 12;94(14):5624-5633. doi: 10.1021/acs.analchem.1c05387. Epub 2022 Mar 31.
Nuclear trafficking of viral genome is an essential cellular process in the life cycles of viruses. Despite substantial progress in uncovering a wide variety of complicated mechanisms of virus entry, intracellular transport of viral components, virus assembly, and egress, the temporal and spatial dynamics of viral genes trafficking within the nucleus remains poorly understood. Herein, using single-particle tracking, we explored the real-time dynamic nuclear trafficking of influenza A virus (IAV) genes packaged as the viral ribonucleoprotein complexes (vRNPs) by combining a four-plasmid DNA transfection system for the reconstruction of green fluorescent protein (GFP)-labeled vRNPs and a spinning disk super-resolution fluorescence microscope. We found that IAV infection significantly induced the formation of actin microfilaments (F-actin) in the nucleus. In combination with the fluorescent protein-tagged nuclear F-actin probe, we visualized the directed movement of GFP-labeled vRNPs foci along the nuclear F-actin with a speed of 0.18 μm/s, which is similar to the microfilaments-dependent slow directed motion of IAVs in the cytoplasm. The disruption of nuclear F-actin after treatment with microfilament inhibitors caused a considerable decrease in vRNPs motility and suppressed the nuclear export of newly produced vRNPs, indicating that the slow, directed movement plays a crucial role in facilitating the nuclear egress of vRNPs. Our findings identified a nuclear F-actin-dependent pathway for IAV vRNPs transporting from the nucleus into the cytoplasm, which may in turn uncover a novel target for antiviral treatment.
病毒基因组的核运输是病毒生命周期中细胞的基本过程。尽管在揭示病毒进入、细胞内运输、病毒组件组装和出芽的各种复杂机制方面取得了相当大的进展,但病毒基因在核内的时空动态仍然知之甚少。在此,我们使用单颗粒跟踪技术,通过结合用于重建绿色荧光蛋白(GFP)标记 vRNP 的四质粒 DNA 转染系统和旋转盘超高分辨率荧光显微镜,探索了流感病毒(IAV)基因作为病毒核糖核蛋白复合物(vRNP)的实时核内动态转运。我们发现 IAV 感染会在核内显著诱导肌动蛋白微丝(F-actin)的形成。与荧光蛋白标记的核 F-actin 探针结合,我们观察到 GFP 标记的 vRNP 焦点沿着核 F-actin 以 0.18 μm/s 的速度定向运动,与 IAV 在细胞质中依赖微丝的缓慢定向运动相似。用微丝抑制剂处理后核 F-actin 的破坏导致 vRNP 运动明显减少,并抑制了新产生的 vRNP 的核输出,表明这种缓慢的定向运动在促进 vRNP 的核输出中起着关键作用。我们的研究结果确定了一种依赖核 F-actin 的 IAV vRNP 从核内到细胞质的运输途径,这可能反过来为抗病毒治疗提供新的靶点。