Suppr超能文献

利用常压光电子能谱研究催化剂和材料表面的新方法的发展

Development of New Methods of Studying Catalyst and Materials Surfaces with Ambient Pressure Photoelectron Spectroscopy.

作者信息

Tao Franklin

机构信息

Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States.

出版信息

Acc Chem Res. 2025 Jan 7;58(1):11-23. doi: 10.1021/acs.accounts.4c00508. Epub 2024 Dec 23.

Abstract

ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed. By tracking the evolution of the catalyst surface during catalyst preparation, AP-XPS can assist in identifying the parameters for preparing an expected catalyst structure. Additionally, it can uncover adsorbate coverage-induced surface restructuring by monitoring the photoemission features of key elements as the gas pressure increases. Surface phase transitions of a catalyst support, supported metal, or supported oxide nanoparticles and restructuring of supported single-atom sites may occur at temperatures lower than a catalysis temperature. AP-XPS can track these temperature-dependent phase transition or structural evolution under catalytic conditions. It also enables analysis of the electronic structure of the catalyst surface during catalysis by collecting valence band spectrum at a specific catalysis temperature. Moreover, it can detect stable intermediates formed at a temperature lower than the catalysis onset temperature and track their transformation to product molecules, providing significant insights in proposing a pathway closest to the actual but unknown one. Time-on-stream quantification of oxidation and reduction processes on catalyst surfaces allows for the study of kinetics of redox, including determinations of reaction order and activation barrier. One challenging task in accurately measuring catalytic reaction rates under kinetic control is measurement of the number of catalytic sites. AP-XPS is a valuable technique for this task, as it can qualitatively identify active sites and quantitatively measure the number of active sites under a specific catalytic condition. For photocatalytic and photoelectrocatalytic systems, AP-XPS helps elucidate charge transfer at the interface of a cocatalyst and semiconductor by identifying shifts in binding energy of a key element, shedding light on electron-hole separation. Photoelectron-induced excitation (PEIE) spectroscopy provides a unique capability for in situ measurement of gas products proximal to the catalyst surface within 0-0.1 mm during catalysis. It enables the on-site in situ identification of gas products and quantification of their partial pressures.The successful development of these methods highlights the unique capabilities of AP-XPS in addressing key topics in catalysis and uncovering crucial information about catalysts under reaction or catalytic conditions that other spectroscopy or microscopy techniques cannot. These advancements are expected to significantly benefit many fields in chemistry, chemical engineering, energy science, materials science, and environmental science. Applications of AP-XPS to study solid-liquid interfaces, especially at the electrode-electrolyte interface in electrochemical processes, are significant. These applications at solid-liquid interfaces include electrification-based chemical transformations, electrochemical CO reduction, water electrolysis, electrochemical reduction of oxidants on the cathode and even oxidation of fuels in fuel cell process, and oxidation and reduction processes in batteries. Further development of instrumentation and spectral methods of AP-XPS will be beneficial to energy conversion, sustainable chemical transformation, and environmental remediation as well as materials design for quantum computing hardware.

摘要

综述

催化剂的表面对于在分子水平上理解催化反应机理以及开发具有更高活性、选择性和耐久性的新型催化剂至关重要。常压X射线光电子能谱(AP-XPS)是一种在气相中研究样品表面的技术,主要用于确定化学组成、分析氧化态以及测量表面成分。

在过去十年中,已经开发出了许多利用AP-XPS对催化关键课题进行基础研究的光电子能谱方法。通过追踪催化剂制备过程中催化剂表面的演变,AP-XPS可以辅助确定制备预期催化剂结构的参数。此外,随着气压增加,通过监测关键元素的光发射特征,它可以揭示吸附质覆盖诱导的表面重构。催化剂载体、负载金属或负载氧化物纳米颗粒的表面相变以及负载单原子位点的重构可能会在低于催化温度的条件下发生。AP-XPS可以追踪催化条件下这些与温度相关的相变或结构演变。它还能够通过在特定催化温度下收集价带光谱来分析催化过程中催化剂表面的电子结构。此外,它可以检测在低于催化起始温度下形成的稳定中间体,并追踪它们向产物分子的转化,这对于提出最接近实际但未知的反应途径提供了重要见解。对催化剂表面氧化和还原过程的在线定量分析有助于研究氧化还原动力学,包括确定反应级数和活化能垒。在动力学控制下准确测量催化反应速率的一项具有挑战性的任务是测量催化位点的数量。AP-XPS是完成这项任务的一项有价值的技术,因为它可以定性识别活性位点并在特定催化条件下定量测量活性位点的数量。对于光催化和光电催化系统,AP-XPS通过识别关键元素结合能的变化,有助于阐明助催化剂与半导体界面处的电荷转移,从而揭示电子-空穴分离情况。光电子诱导激发(PEIE)光谱为在催化过程中原位测量距离催化剂表面0-0.1毫米范围内的气体产物提供了独特的能力。它能够现场原位识别气体产物并定量其分压。

这些方法的成功开发突出了AP-XPS在解决催化关键课题以及揭示其他光谱或显微镜技术无法获得的有关反应或催化条件下催化剂的关键信息方面的独特能力。这些进展有望在化学、化学工程、能源科学、材料科学和环境科学等许多领域带来显著益处。AP-XPS在研究固液界面,特别是在电化学过程中的电极-电解质界面方面的应用具有重要意义。这些在固液界面的应用包括基于带电的化学转化、电化学CO还原、水电解、阴极上氧化剂的电化学还原以及燃料电池过程中燃料的氧化,甚至电池中的氧化和还原过程。AP-XPS仪器和光谱方法的进一步发展将有利于能量转换、可持续化学转化、环境修复以及量子计算硬件材料设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验