Sapkota Nishchal, Zhang Yejia, Zhao Zihao, Gomez Maria Jose, Hsi Yuhan, Wilson Jordan A, Kawasaki Kazuhiko, Holmes Greg, Wu Meng, Jabs Ethylin Wang, Richtsmeier Joan T, Perrine Susan M Motch, Chen Danny Z
Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
Department of Anthropology, The Pennsylvania State University, University Park, PA, 16802, USA.
Sci Rep. 2025 Jan 31;15(1):3893. doi: 10.1038/s41598-025-87797-9.
Osteochondrodysplasia, affecting 2-3% of newborns globally, is a group of bone and cartilage disorders that often result in head malformations, contributing to childhood morbidity and reduced quality of life. Current research on this disease using mouse models faces challenges since it involves accurately segmenting (precisely delineating) the developing cartilage in 3D micro-CT images of embryonic mice. Tackling this segmentation task with deep learning (DL) methods is laborious due to the big burden of manual image annotation, expensive due to the high acquisition costs of 3D micro-CT images, and difficult due to embryonic cartilage's complex and rapidly changing shapes. While DL approaches have been proposed to automate cartilage segmentation, most such models have limited accuracy and generalizability, especially across data from different embryonic age groups. To address these limitations, we propose novel DL methods that can be adopted by any DL architectures-including Convolutional Neural Networks (CNNs), Transformers, or hybrid models-which effectively leverage age and spatial information to enhance model performance. Specifically, we propose two new mechanisms, one conditioned on discrete age categories and the other on continuous image crop locations, to enable an accurate representation of cartilage shape changes across ages and local shape details throughout the cranial region. Extensive experiments on multi-age cartilage segmentation datasets show significant and consistent performance improvements when integrating our conditional modules into popular DL segmentation architectures. On average, we achieve a 1.7% Dice score increase with minimal computational overhead and a 7.5% improvement on unseen data. These results highlight the potential of our approach for developing robust, universal models capable of handling diverse datasets with limited annotated data, a key challenge in DL-based medical image analysis.
骨软骨发育异常影响着全球2%-3%的新生儿,是一组骨骼和软骨疾病,常导致头部畸形,增加儿童发病率并降低生活质量。目前利用小鼠模型对该疾病进行的研究面临挑战,因为这涉及在胚胎小鼠的三维显微CT图像中准确分割(精确描绘)发育中的软骨。由于手动图像标注负担繁重,利用深度学习(DL)方法处理这一分割任务很费力;由于三维显微CT图像的采集成本高昂,该方法成本很高;又由于胚胎软骨形状复杂且变化迅速,该方法难度很大。虽然已经有人提出利用DL方法实现软骨分割自动化,但大多数此类模型的准确性和通用性有限,尤其是在处理来自不同胚胎年龄组的数据时。为解决这些局限性,我们提出了新颖的DL方法,可被任何DL架构采用,包括卷积神经网络(CNN)、Transformer或混合模型,这些方法能有效利用年龄和空间信息来提升模型性能。具体而言,我们提出了两种新机制,一种基于离散的年龄类别,另一种基于连续的图像裁剪位置,以准确呈现不同年龄阶段的软骨形状变化以及整个颅骨区域的局部形状细节。在多年龄软骨分割数据集上进行的大量实验表明,将我们的条件模块集成到流行的DL分割架构中时,性能有显著且持续的提升。平均而言,我们在计算开销最小的情况下实现了Dice分数提高1.7%,在未见数据上提高了7.5%。这些结果凸显了我们的方法在开发强大通用模型方面的潜力,该模型能够处理注释数据有限的多样数据集,这是基于DL的医学图像分析中的一项关键挑战。