Suppr超能文献

医科大学中基于人工智能的未来学习中心的设计策略

Design strategies for artificial intelligence based future learning centers in medical universities.

作者信息

Xiaowen Yang, Jingjing Ding, Biao Wang, Shenzhong Zhang, Yana Wu

机构信息

Nanjing Medical University Library, Nanjing, Jiangsu, China.

Nanjing Medical University Institute of Medical Education Research, Nanjing, Jiangsu, China.

出版信息

BMC Med Educ. 2025 Jan 31;25(1):161. doi: 10.1186/s12909-025-06640-x.

Abstract

BACKGROUND

This study explores the acceptance of artificial intelligence(AI) tools in medical students and its influencing factors, thus providing theoretical basis and practical guidance for the construction of future learning centers in medical universities.

METHODS

This study comprehensively applied the unified theory of acceptance and use of technology(UTAUT), expectancy confirmation theory (ECT), and innovation diffusion theory (IDT) to analyze the data through structural equation modeling.

RESULTS

Effort expectancy (EE), facilitating condition (FC), social influence (SI), and satisfaction (SA) significantly influence medical students' continuance intention (CI) to use artificial intelligence tools. Relative advantage (RA) has a significant impact on medical students' satisfaction (SA) with artificial intelligence tools. Personal innovativeness (PI) plays a significant positive moderating role in the relationships between facilitating condition (FC) and continuance intention (CI), as well as between satisfaction (SA) and continuance intention (CI).

CONCLUSIONS

The construction of AI-based future learning centers in medical universities should attach importance to providing personalized learning paths, ensuring technical support and training, creating a collaborative and innovative environment, and showcasing the comparative advantage of tools.

摘要

背景

本研究探讨医学生对人工智能工具的接受度及其影响因素,从而为医科大学未来学习中心的建设提供理论依据和实践指导。

方法

本研究综合应用技术接受与使用统一理论(UTAUT)、期望确认理论(ECT)和创新扩散理论(IDT),通过结构方程模型对数据进行分析。

结果

努力期望(EE)、促进条件(FC)、社会影响(SI)和满意度(SA)显著影响医学生使用人工智能工具的持续意愿(CI)。相对优势(RA)对医学生对人工智能工具的满意度(SA)有显著影响。个人创新性(PI)在促进条件(FC)与持续意愿(CI)以及满意度(SA)与持续意愿(CI)之间的关系中发挥显著的正向调节作用。

结论

医科大学基于人工智能的未来学习中心建设应重视提供个性化学习路径、确保技术支持与培训、营造协作创新环境以及展示工具的比较优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929a/11786482/ea7f0d05e987/12909_2025_6640_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验