Institute of Hospital Management, West China Hospital, Sichuan University, No. 37, Guoxue Xiang, Chengdu, 610041, China, 86 13880713452.
West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
JMIR Med Educ. 2024 Oct 28;10:e57132. doi: 10.2196/57132.
Artificial intelligence (AI) chatbots are poised to have a profound impact on medical education. Medical students, as early adopters of technology and future health care providers, play a crucial role in shaping the future of health care. However, little is known about the utilization of, perceptions on, and intention to use AI chatbots among medical students in China.
This study aims to explore the utilization of, perceptions on, and intention to use generative AI chatbots among medical students in China, using the Unified Theory of Acceptance and Use of Technology (UTAUT) framework. By conducting a national cross-sectional survey, we sought to identify the key determinants that influence medical students' acceptance of AI chatbots, thereby providing a basis for enhancing their integration into medical education. Understanding these factors is crucial for educators, policy makers, and technology developers to design and implement effective AI-driven educational tools that align with the needs and expectations of future health care professionals.
A web-based electronic survey questionnaire was developed and distributed via social media to medical students across the country. The UTAUT was used as a theoretical framework to design the questionnaire and analyze the data. The relationship between behavioral intention to use AI chatbots and UTAUT predictors was examined using multivariable regression.
A total of 693 participants were from 57 universities covering 21 provinces or municipalities in China. Only a minority (199/693, 28.72%) reported using AI chatbots for studying, with ChatGPT (129/693, 18.61%) being the most commonly used. Most of the participants used AI chatbots for quickly obtaining medical information and knowledge (631/693, 91.05%) and increasing learning efficiency (594/693, 85.71%). Utilization behavior, social influence, facilitating conditions, perceived risk, and personal innovativeness showed significant positive associations with the behavioral intention to use AI chatbots (all P values were <.05).
Chinese medical students hold positive perceptions toward and high intentions to use AI chatbots, but there are gaps between intention and actual adoption. This highlights the need for strategies to improve access, training, and support and provide peer usage examples to fully harness the potential benefits of chatbot technology.
人工智能(AI)聊天机器人将对医学教育产生深远影响。医学生作为技术的早期采用者和未来的医疗保健提供者,在塑造医疗保健的未来方面发挥着至关重要的作用。然而,目前对于中国医学生对 AI 聊天机器人的使用情况、看法和使用意愿知之甚少。
本研究旨在使用统一技术接受和使用理论(UTAUT)框架,探讨中国医学生对生成式 AI 聊天机器人的使用情况、看法和使用意愿。通过进行全国性的横断面调查,我们旨在确定影响医学生接受 AI 聊天机器人的关键决定因素,从而为增强其融入医学教育提供依据。了解这些因素对于教育工作者、政策制定者和技术开发者设计和实施符合未来医疗保健专业人员需求和期望的 AI 驱动教育工具至关重要。
我们开发了一个基于网络的电子调查问卷,并通过社交媒体分发给全国各地的医学生。我们使用 UTAUT 作为理论框架来设计问卷和分析数据。使用多变量回归分析了 AI 聊天机器人使用意愿与 UTAUT 预测因子之间的关系。
共有 693 名参与者来自中国 21 个省、自治区和直辖市的 57 所大学。只有少数(199/693,28.72%)人报告使用 AI 聊天机器人进行学习,其中 ChatGPT(129/693,18.61%)是最常用的。大多数参与者使用 AI 聊天机器人是为了快速获取医学信息和知识(631/693,91.05%)和提高学习效率(594/693,85.71%)。使用行为、社会影响、便利条件、感知风险和个人创新性与使用 AI 聊天机器人的行为意愿呈显著正相关(均 P 值<.05)。
中国医学生对 AI 聊天机器人持有积极的看法和高度的使用意愿,但意图与实际采用之间存在差距。这凸显了需要采取策略来改善访问、培训和支持,并提供同伴使用示例,以充分利用聊天机器人技术的潜在优势。