Suppr超能文献

基于影像组学和突变特征的食管鳞状细胞癌患者生存结局预测

Survival outcome prediction of esophageal squamous cell carcinoma patients based on radiomics and mutation signature.

作者信息

Yan Ting, Yan Zhenpeng, Chen Guohui, Xu Songrui, Wu Chenxuan, Zhou Qichao, Wang Guolan, Li Ying, Jia Mengjiu, Zhuang Xiaofei, Yang Jie, Liu Lili, Wang Lu, Wu Qinglu, Wang Bin, Yan Tianyi

机构信息

Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.

Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.

出版信息

Cancer Imaging. 2025 Jan 31;25(1):9. doi: 10.1186/s40644-024-00821-5.

Abstract

BACKGROUND

The present study aimed to develop a nomogram model for predicting overall survival (OS) in esophageal squamous cell carcinoma (ESCC) patients.

METHODS

A total of 205 patients with ESCC were enrolled and randomly divided into a training cohort (n = 153) and a test cohort (n = 52) at a ratio of 7:3. Multivariate Cox regression was used to construct the radiomics model based on CT data. The mutation signature was constructed based on whole genome sequencing data and found to be significantly associated with the prognosis of patients with ESCC. A nomogram model combining the Rad-score and mutation signature was constructed. An integrated nomogram model combining the Rad-score, mutation signature, and clinical factors was constructed.

RESULTS

A total of 8 CT features were selected for multivariate Cox regression analysis to determine whether the Rad-score was significantly correlated with OS. The area under the curve (AUC) of the radiomics model was 0.834 (95% CI, 0.767-0.900) for the training cohort and 0.733 (95% CI, 0.574-0.892) for the test cohort. The Rad-score, S3, and S6 were used to construct an integrated RM nomogram. The predictive performance of the RM nomogram model was better than that of the radiomics model, with an AUC of 0. 830 (95% CI, 0.761-0.899) in the training cohort and 0.793 (95% CI, 0.653-0.934) in the test cohort. The Rad-score, TNM stage, lymph node metastasis status, S3, and S6 were used to construct an integrated RMC nomogram. The predictive performance of the RMC nomogram model was better than that of the radiomics model and RM nomogram model, with an AUC of 0. 862 (95% CI, 0.795-0.928) in the training cohort and 0. 837 (95% CI, 0.705-0.969) in the test cohort.

CONCLUSION

An integrated nomogram model combining the Rad-score, mutation signature, and clinical factors can better predict the prognosis of patients with ESCC.

摘要

背景

本研究旨在建立一种列线图模型,用于预测食管鳞状细胞癌(ESCC)患者的总生存期(OS)。

方法

共纳入205例ESCC患者,并以7:3的比例随机分为训练队列(n = 153)和测试队列(n = 52)。采用多因素Cox回归分析,基于CT数据构建影像组学模型。基于全基因组测序数据构建突变特征,并发现其与ESCC患者的预后显著相关。构建了一个结合Rad评分和突变特征的列线图模型。构建了一个整合Rad评分、突变特征和临床因素的综合列线图模型。

结果

共选择8个CT特征进行多因素Cox回归分析,以确定Rad评分是否与OS显著相关。影像组学模型在训练队列中的曲线下面积(AUC)为0.834(95%CI,0.767 - 0.900),在测试队列中为0.733(95%CI,0.574 - 0.892)。使用Rad评分、S3和S6构建了一个综合RM列线图。RM列线图模型的预测性能优于影像组学模型,在训练队列中的AUC为0.830(95%CI,0.761 - 0.899),在测试队列中为0.793(95%CI,0.653 - 0.934)。使用Rad评分、TNM分期、淋巴结转移状态、S3和S6构建了一个综合RMC列线图。RMC列线图模型的预测性能优于影像组学模型和RM列线图模型,在训练队列中的AUC为0.862(95%CI,0.795 - 0.928),在测试队列中为0.837(95%CI,0.705 - 0.969)。

结论

整合Rad评分、突变特征和临床因素的综合列线图模型能够更好地预测ESCC患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cf4/11783911/8d5cdd01b99d/40644_2024_821_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验