Suppr超能文献

人工智能增强型心电图分析作为预测稳定型心绞痛患者阻塞性冠状动脉疾病的一种有前景的工具。

Artificial intelligence-enhanced electrocardiography analysis as a promising tool for predicting obstructive coronary artery disease in patients with stable angina.

作者信息

Park Jiesuck, Kim Joonghee, Kang Si-Hyuck, Lee Jina, Hong Youngtaek, Chang Hyuk-Jae, Cho Youngjin, Yoon Yeonyee E

机构信息

Department of Cardiology, Seoul National University Bundang Hospital, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.

Department of Internal Medicine, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.

出版信息

Eur Heart J Digit Health. 2024 May 14;5(4):444-453. doi: 10.1093/ehjdh/ztae038. eCollection 2024 Jul.

Abstract

AIMS

The clinical feasibility of artificial intelligence (AI)-based electrocardiography (ECG) analysis for predicting obstructive coronary artery disease (CAD) has not been sufficiently validated in patients with stable angina, especially in large sample sizes.

METHODS AND RESULTS

A deep learning framework for the quantitative ECG (QCG) analysis was trained and internally tested to derive the risk scores (0-100) for obstructive CAD (QCG) and extensive CAD (QCG) using 50 756 ECG images from 21 866 patients who underwent coronary artery evaluation for chest pain (invasive coronary or computed tomography angiography). External validation was performed in 4517 patients with stable angina who underwent coronary imaging to identify obstructive CAD. The QCG and QCG scores were significantly increased in the presence of obstructive and extensive CAD (all < 0.001) and with increasing degrees of stenosis and disease burden, respectively (all < 0.001). In the internal and external tests, QCG exhibited a good predictive ability for obstructive CAD [area under the curve (AUC), 0.781 and 0.731, respectively] and severe obstructive CAD (AUC, 0.780 and 0.786, respectively), and QCG exhibited a good predictive ability for extensive CAD (AUC, 0.689 and 0.784). In the external test, the QCG and QCG scores demonstrated independent and incremental predictive values for obstructive and extensive CAD, respectively, over that with conventional clinical risk factors. The QCG scores demonstrated significant associations with lesion characteristics, such as the fractional flow reserve, coronary calcification score, and total plaque volume.

CONCLUSION

The AI-based QCG analysis for predicting obstructive CAD in patients with stable angina, including those with severe stenosis and multivessel disease, is feasible.

摘要

目的

基于人工智能(AI)的心电图(ECG)分析用于预测稳定性心绞痛患者阻塞性冠状动脉疾病(CAD)的临床可行性尚未得到充分验证,尤其是在大样本量的情况下。

方法与结果

训练了一个用于定量心电图(QCG)分析的深度学习框架,并进行内部测试,使用来自21866例因胸痛接受冠状动脉评估(侵入性冠状动脉造影或计算机断层扫描血管造影)患者的50756张心电图图像,得出阻塞性CAD(QCG)和广泛性CAD(QCG)的风险评分(0 - 100)。对4517例接受冠状动脉成像以确定阻塞性CAD的稳定性心绞痛患者进行了外部验证。在存在阻塞性和广泛性CAD时,QCG和QCG评分分别显著升高(均<0.001),并且分别随着狭窄程度和疾病负担的增加而升高(均<0.001)。在内部和外部测试中,QCG对阻塞性CAD [曲线下面积(AUC)分别为0.781和0.731]和严重阻塞性CAD(AUC分别为0.780和0.786)表现出良好的预测能力,QCG对广泛性CAD(AUC分别为0.689和0.784)表现出良好的预测能力。在外部测试中,与传统临床危险因素相比,QCG和QCG评分分别对阻塞性和广泛性CAD显示出独立的增量预测价值。QCG评分与病变特征,如血流储备分数、冠状动脉钙化评分和总斑块体积,显示出显著相关性。

结论

基于AI的QCG分析用于预测稳定性心绞痛患者的阻塞性CAD是可行的,包括那些有严重狭窄和多支血管病变的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/713f/11284006/02b1a26c0d3b/ztae038_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验