Suppr超能文献

人脑成像中自动和半自动MRI分割的范围综述。

A scoping review of automatic and semi-automatic MRI segmentation in human brain imaging.

作者信息

Chau M, Vu H, Debnath T, Rahman M G

机构信息

Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.

Allied Health and Human Performance Unit, University of South Australia, Adelaide, SA 5000, Australia.

出版信息

Radiography (Lond). 2025 Mar;31(2):102878. doi: 10.1016/j.radi.2025.01.013. Epub 2025 Jan 31.

Abstract

INTRODUCTION

AI-based segmentation techniques in brain MRI have revolutionized neuroimaging by enhancing the accuracy and efficiency of brain structure analysis. These techniques are pivotal for diagnosing neurodegenerative diseases, classifying psychiatric conditions, and predicting brain age. This scoping review synthesizes current methodologies, identifies key trends, and highlights gaps in the use of automatic and semi-automatic segmentation tools in brain MRI, particularly focusing on their application to healthy populations and clinical utility.

METHODS

A scoping review was conducted following Arksey and O'Malley's framework and PRISMA-ScR guidelines. A comprehensive search was performed across six databases for studies published between 2014 and 2024. Studies focused on AI-based brain segmentation in healthy populations, and patients with neurodegenerative diseases, and psychiatric disorders were included, while reviews, case series, and studies without human participants were excluded.

RESULTS

Thirty-two studies were included, employing various segmentation tools and AI models such as convolutional neural networks for segmenting gray matter, white matter, cerebrospinal fluid, and pathological regions. FreeSurfer, which utilizes algorithmic techniques, are also commonly used for automated segmentation. AI models demonstrated high accuracy in brain age prediction, neurodegenerative disease classification, and psychiatric disorder subtyping. Longitudinal studies tracked disease progression, while multimodal approaches integrating MRI with fMRI and PET enhanced diagnostic precision.

CONCLUSION

AI-based segmentation techniques provide scalable solutions for neuroimaging, advancing personalized brain health strategies and supporting early diagnosis of neurological and psychiatric conditions. However, challenges related to standardization, generalizability, and ethical considerations remain.

IMPLICATIONS FOR PRACTICE

The integration of AI tools and algorithm-based methods into clinical workflows can enhance diagnostic accuracy and efficiency, but greater focus on model interpretability, standardization of imaging protocols, and patient consent processes is needed to ensure responsible adoption in practice.

摘要

引言

基于人工智能的脑磁共振成像(MRI)分割技术通过提高脑结构分析的准确性和效率,彻底改变了神经影像学。这些技术对于诊断神经退行性疾病、分类精神疾病以及预测脑年龄至关重要。本综述综合了当前的方法,确定了关键趋势,并突出了脑MRI中自动和半自动分割工具使用方面的差距,特别关注它们在健康人群中的应用和临床效用。

方法

按照阿克西和奥马利的框架以及PRISMA-ScR指南进行了一项综述。在六个数据库中对2014年至2024年发表的研究进行了全面检索。纳入了关注健康人群、神经退行性疾病患者和精神疾病患者基于人工智能的脑分割的研究,而综述、病例系列以及没有人类参与者的研究被排除。

结果

纳入了32项研究,采用了各种分割工具和人工智能模型,如用于分割灰质、白质、脑脊液和病理区域的卷积神经网络。利用算法技术的FreeSurfer也常用于自动分割。人工智能模型在脑年龄预测、神经退行性疾病分类和精神疾病亚型分类方面显示出高准确性。纵向研究跟踪了疾病进展,而将MRI与功能磁共振成像(fMRI)和正电子发射断层扫描(PET)相结合的多模态方法提高了诊断精度。

结论

基于人工智能的分割技术为神经影像学提供了可扩展的解决方案,推动了个性化脑健康策略的发展,并支持神经和精神疾病的早期诊断。然而,与标准化、可推广性和伦理考量相关的挑战仍然存在。

对实践的启示

将人工智能工具和基于算法的方法整合到临床工作流程中可以提高诊断准确性和效率,但需要更多地关注模型可解释性、成像协议的标准化以及患者同意过程,以确保在实践中负责任地采用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验