Erana-Perez Zuriñe, Igartua Manoli, Santos-Vizcaino Edorta, Hernandez Rosa Maria
NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
J Control Release. 2025 Mar 10;379:951-966. doi: 10.1016/j.jconrel.2025.01.085. Epub 2025 Feb 3.
Extracellular vesicles (EV) represent an advanced platform for genetic material and protein delivery, particularly when they are loaded through the so-called endogenous loading method. This study investigates the differences between large EV (lEV) and small EV (sEV) obtained from genetically engineered C2C12 myoblasts overexpressing two different model biomolecules. Erythropoietin (EPO) is a secretory protein with anti-inflammatory, angiogenic and hematopoietic effects, while TGL is a chimeric cytosolic protein containing green fluorescent protein (GFP) and luciferase, used for imaging. We compared these EV subtypes in terms of protein and nucleic acid loading, intercellular cargo transfer capacity, and subsequent functional effects both in vitro and in vivo. Our results demonstrated that lEV exhibited higher protein and mRNA cargo content than sEV, which also translated into increased intercellular cargo transfer capacity, even when dosing according to the constitutive sEV and lEV secretion ratio (10,1). Indeed, we showed that, although receptor cells successfully internalized both EV subtypes, cells treated with lEV displayed stronger intracellular luciferase signals and higher EPO protein secretion compared to those treated with sEV. In terms of functional effects, both EV subtypes exerted anti-inflammatory and antioxidant effects in lipopolysaccharide-activated macrophages, as well as angiogenic effects in human umbilical vein endothelial cells. Finally, in vivo studies evidenced that subcutaneously administered lEV led to a more significant increase in hematocrit levels and red blood cell counts than sEV. Taken together, these findings suggest that the protein and mRNA cargo differ between endogenously loaded EV subtypes, and that this variation in cargo loading leads to differences in their functional outcomes. Therefore, the choice of EV subtype could be critical for optimizing EV-based delivery strategies for biologic drugs.
细胞外囊泡(EV)是遗传物质和蛋白质递送的先进平台,特别是当它们通过所谓的内源性装载方法进行装载时。本研究调查了从过表达两种不同模型生物分子的基因工程C2C12成肌细胞中获得的大型细胞外囊泡(lEV)和小型细胞外囊泡(sEV)之间的差异。促红细胞生成素(EPO)是一种具有抗炎、血管生成和造血作用的分泌蛋白,而TGL是一种包含绿色荧光蛋白(GFP)和荧光素酶的嵌合胞质蛋白,用于成像。我们在蛋白质和核酸装载、细胞间货物转移能力以及体外和体内的后续功能效应方面比较了这些细胞外囊泡亚型。我们的结果表明,lEV比sEV表现出更高的蛋白质和mRNA货物含量,这也转化为细胞间货物转移能力的增强,即使根据组成性sEV和lEV分泌率(10:1)给药也是如此。事实上,我们表明,尽管受体细胞成功内化了两种细胞外囊泡亚型,但与用sEV处理的细胞相比,用lEV处理的细胞显示出更强的细胞内荧光素酶信号和更高的EPO蛋白分泌。在功能效应方面,两种细胞外囊泡亚型在脂多糖激活的巨噬细胞中均发挥抗炎和抗氧化作用,以及在人脐静脉内皮细胞中发挥血管生成作用。最后,体内研究证明,皮下注射lEV比sEV导致血细胞比容水平和红细胞计数更显著的增加。综上所述,这些发现表明,内源性装载的细胞外囊泡亚型之间的蛋白质和mRNA货物不同,并且这种货物装载的差异导致它们功能结果的差异。因此,细胞外囊泡亚型的选择对于优化基于细胞外囊泡的生物药物递送策略可能至关重要。