Suppr超能文献

主动加载 cargo RNA 的平台,以阐明 EV 介导的递释中的限制步骤。

A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery.

机构信息

Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.

Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.

出版信息

J Extracell Vesicles. 2016 May 13;5:31027. doi: 10.3402/jev.v5.31027. eCollection 2016.

Abstract

Extracellular vesicles (EVs) mediate intercellular communication through transfer of RNA and protein between cells. Thus, understanding how cargo molecules are loaded and delivered by EVs is of central importance for elucidating the biological roles of EVs and developing EV-based therapeutics. While some motifs modulating the loading of biomolecular cargo into EVs have been elucidated, the general rules governing cargo loading and delivery remain poorly understood. To investigate how general biophysical properties impact loading and delivery of RNA by EVs, we developed a platform for actively loading engineered cargo RNAs into EVs. In our system, the MS2 bacteriophage coat protein was fused to EV-associated proteins, and the cognate MS2 stem loop was engineered into cargo RNAs. Using this Targeted and Modular EV Loading (TAMEL) approach, we identified a configuration that substantially enhanced cargo RNA loading (up to 6-fold) into EVs. When applied to vesicles expressing the vesicular stomatitis virus glycoprotein (VSVG) - gesicles - we observed a 40-fold enrichment in cargo RNA loading. While active loading of mRNA-length (>1.5 kb) cargo molecules was possible, active loading was much more efficient for smaller (~0.5 kb) RNA molecules. We next leveraged the TAMEL platform to elucidate the limiting steps in EV-mediated delivery of mRNA and protein to prostate cancer cells, as a model system. Overall, most cargo was rapidly degraded in recipient cells, despite high EV-loading efficiencies and substantial EV uptake by recipient cells. While gesicles were efficiently internalized via a VSVG-mediated mechanism, most cargo molecules were rapidly degraded. Thus, in this model system, inefficient endosomal fusion or escape likely represents a limiting barrier to EV-mediated transfer. Altogether, the TAMEL platform enabled a comparative analysis elucidating a key opportunity for enhancing EV-mediated delivery to prostate cancer cells, and this technology should be of general utility for investigations and applications of EV-mediated transfer in other systems.

摘要

细胞外囊泡 (EVs) 通过在细胞间转移 RNA 和蛋白质来介导细胞间通讯。因此,了解货物分子如何被 EV 装载和递送至细胞内对于阐明 EV 的生物学功能和开发基于 EV 的治疗方法至关重要。虽然已经阐明了一些调节生物分子货物装载到 EV 中的基序,但货物装载和递送至细胞内的一般规则仍知之甚少。为了研究一般生物物理特性如何影响 EV 装载和递送至细胞内 RNA,我们开发了一个主动将工程化货物 RNA 装载到 EV 中的平台。在我们的系统中,MS2 噬菌体衣壳蛋白与 EV 相关蛋白融合,而同源的 MS2 茎环则被设计到货物 RNA 中。使用这种靶向和模块化 EV 加载 (TAMEL) 方法,我们确定了一种大大增强货物 RNA 装载到 EV 中的配置(高达 6 倍)。当应用于表达水疱性口炎病毒糖蛋白 (VSVG) 的囊泡(gesicles)时,我们观察到货物 RNA 装载增加了 40 倍。虽然可以主动装载 mRNA 长度 (>1.5 kb) 的货物分子,但较小 (~0.5 kb) 的 RNA 分子的主动装载效率更高。接下来,我们利用 TAMEL 平台阐明了 EV 介导的 mRNA 和蛋白质递送至前列腺癌细胞的限制步骤,作为模型系统。总的来说,尽管 EV 装载效率高且受体细胞大量摄取 EV,但大多数货物在受体细胞中迅速降解。虽然 gesicles 通过 VSVG 介导的机制被有效内化,但大多数货物分子迅速降解。因此,在这个模型系统中,内体融合或逃逸效率低下可能是 EV 介导转移的限制因素。总之,TAMEL 平台能够进行比较分析,阐明了增强 EV 介导的递送至前列腺癌细胞的机会,并且该技术对于其他系统中 EV 介导转移的研究和应用具有普遍的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2381/4870355/9dffa98c9c49/JEV-5-31027-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验