Yang Chengfeng, Han Benfeng, Tang Junbo, Hu Jiawei, Qiu Lifei, Cai Wanzhi, Zhou Xin, Zhang Xue
Department of Entomology, College of Plant Protection, China Agricultural University, 100193 Beijing, China.
Sanya Institute of China Agricultural University, 572024 Hainan, China.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf016.
The maintenance of bacterial diversity at both species and strain levels is crucial for the sustainability of honey bee gut microbiota and host health. Periodic or random fluctuation in diet typically alters the metabolic niches available to gut microbes, thereby continuously reshaping bacterial diversity and interspecific interactions. It remains unclear how closely related bacteria adapt to these fluctuations and maintain coexistence within the bee gut. Here, we demonstrate that the five predominant Gilliamella species associated with Apis cerana, a widely distributed Asiatic honey bee, have diverged in carbohydrate metabolism to adapt to distinct nutrient niches driven by dietary fluctuation. Specifically, the glycan-specialists gain improved growth on a pollen-rich diet, but are overall inferior in competition to non-glycan-specialist on either a simple sugar or sugar-pollen diet, when co-inoculated in the bee host and transmitted across generations. Strikingly, despite of their disadvantage in a high-sugar condition, the glycan-specialists are found prevalent in natural A. cerana guts. We further reveal that these bacteria have adopted a life history strategy characterized by high biomass yield on a low-concentration sugar diet, allowing them to thrive under poor nutritional conditions, such as when the bee hosts undergo periodical starvation. Transcriptome analyses indicate that the divergence in life history strategies is attributed to gene expression programming rather than genetic variation. This study highlights the importance of integrative metabolic strategies in carbohydrate utilization, which facilitate the coexistence of closely related Gilliamella species in a changing bee gut environment.
在物种和菌株水平上维持细菌多样性对于蜜蜂肠道微生物群的可持续性和宿主健康至关重要。饮食中的周期性或随机波动通常会改变肠道微生物可利用的代谢生态位,从而不断重塑细菌多样性和种间相互作用。目前尚不清楚亲缘关系较近的细菌如何适应这些波动并在蜜蜂肠道内维持共存。在这里,我们证明了与中华蜜蜂(一种广泛分布的亚洲蜜蜂)相关的五种主要的吉氏菌属物种在碳水化合物代谢方面已经发生了分化,以适应由饮食波动驱动的不同营养生态位。具体而言,聚糖专家型菌株在富含花粉的饮食中生长得到改善,但当与蜜蜂宿主共同接种并代代相传时,在简单糖或糖 - 花粉饮食中与非聚糖专家型菌株竞争时总体处于劣势。令人惊讶的是,尽管聚糖专家型菌株在高糖条件下处于劣势,但在自然中华蜜蜂肠道中却普遍存在。我们进一步揭示,这些细菌采用了一种生活史策略,其特征是在低浓度糖饮食中具有高生物量产量,这使它们能够在营养条件较差的情况下茁壮成长,例如当蜜蜂宿主经历周期性饥饿时。转录组分析表明,生活史策略的差异归因于基因表达编程而非遗传变异。这项研究强调了碳水化合物利用中综合代谢策略的重要性,这有助于亲缘关系较近的吉氏菌属物种在不断变化的蜜蜂肠道环境中共存。