Suppr超能文献

异质性下的稳健图结构学习

Robust graph structure learning under heterophily.

作者信息

Xie Xuanting, Chen Wenyu, Kang Zhao

机构信息

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.

出版信息

Neural Netw. 2025 May;185:107206. doi: 10.1016/j.neunet.2025.107206. Epub 2025 Jan 30.

Abstract

A graph is a fundamental mathematical structure in characterizing relations between different objects and has been widely used on various learning tasks. Most methods implicitly assume a given graph to be accurate and complete. However, real data is inevitably noisy and sparse, which will lead to inferior results in downstream tasks, such as node classification and clustering. Despite the remarkable success of recent graph representation learning methods, they inherently presume that the graph is homophilic, and largely overlook heterophily, where most connected nodes are from different classes. In this regard, we propose a novel robust graph structure learning method to achieve a high-quality graph from heterophilic data for downstream tasks. We first apply a high-pass filter to make each node more distinctive from its neighbors by encoding structure information into the node features. Then, we learn a robust graph with an adaptive norm characterizing different levels of noise. Afterwards, we propose a novel regularizer to further refine the graph structure. Clustering and semi-supervised classification experiments on heterophilic graphs verify the effectiveness of our method. In particular, our simple method can have better performance than fancy deep learning methods in handling heterophilic graphs by delivering superior accuracy.

摘要

图是刻画不同对象之间关系的一种基本数学结构,已广泛应用于各种学习任务中。大多数方法隐含地假设给定的图是准确且完整的。然而,实际数据不可避免地存在噪声和稀疏性,这将导致在下游任务(如节点分类和聚类)中产生较差的结果。尽管最近的图表示学习方法取得了显著成功,但它们本质上假定图是同质性的,并且很大程度上忽略了异质性,即大多数相连节点来自不同类别。在这方面,我们提出了一种新颖的鲁棒图结构学习方法,以便从异质数据中为下游任务获得高质量的图。我们首先应用高通滤波器,通过将结构信息编码到节点特征中,使每个节点与其邻居更具差异性。然后,我们学习一个具有自适应范数的鲁棒图,以表征不同程度的噪声。之后,我们提出一种新颖的正则化器来进一步优化图结构。在异质图上进行的聚类和半监督分类实验验证了我们方法的有效性。特别是,我们的简单方法在处理异质图时能够通过提供更高的准确率而比复杂的深度学习方法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验