Suppr超能文献

具有鲁棒性的简化PCNet

Simplified PCNet with robustness.

作者信息

Li Bingheng, Xie Xuanting, Lei Haoxiang, Fang Ruiyi, Kang Zhao

机构信息

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.

Department of Computer Science, Western University, London, ON N6A 5B7, Canada.

出版信息

Neural Netw. 2025 Apr;184:107099. doi: 10.1016/j.neunet.2024.107099. Epub 2024 Dec 28.

Abstract

Graph Neural Networks (GNNs) have garnered significant attention for their success in learning the representation of homophilic or heterophilic graphs. However, they cannot generalize well to real-world graphs with different levels of homophily. In response, the Poisson-Charlier Network (PCNet) (Li et al., 2024), the previous work, allows graph representation to be learned from heterophily to homophily. Although PCNet alleviates the heterophily issue, there remain some challenges in further improving the efficacy and efficiency. In this paper, we simplify PCNet and enhance its robustness. We first extend the filter order to continuous values and reduce its parameters. Two variants with adaptive neighborhood sizes are implemented. Theoretical analysis shows our model's robustness to graph structure perturbations or adversarial attacks. We validate our approach through semi-supervised learning tasks on various datasets representing both homophilic and heterophilic graphs. The code has been released in https://github.com/uestclbh/SPC-Net.

摘要

图神经网络(GNNs)因其在学习同构图或异构图表示方面的成功而备受关注。然而,它们不能很好地推广到具有不同同质性水平的真实世界图。作为回应,之前的工作泊松 - 查利尔网络(PCNet)(Li等人,2024)允许从异质性到同质性学习图表示。尽管PCNet缓解了异质性问题,但在进一步提高有效性和效率方面仍存在一些挑战。在本文中,我们简化了PCNet并增强了其鲁棒性。我们首先将滤波器阶数扩展到连续值并减少其参数。实现了两种具有自适应邻域大小的变体。理论分析表明我们的模型对图结构扰动或对抗攻击具有鲁棒性。我们通过在表示同构图和异构图的各种数据集上的半监督学习任务来验证我们的方法。代码已在https://github.com/uestclbh/SPC-Net上发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验