Suppr超能文献

针对患有慢性阻塞性肺疾病(COPD)和呼吸衰竭的老年重症监护病房(ICU)患者谵妄的增强型机器学习预测建模:一项基于多机构重症监护医学信息库第四版(MIMIC-IV)的回顾性研究

Enhanced machine learning predictive modeling for delirium in elderly ICU patients with COPD and respiratory failure: A retrospective study based on MIMIC-IV.

作者信息

Wu Zong-Bi, Jiang You-Li, Li Shuai-Shuai, Li Ao

机构信息

Nursing Department, Shenzhen Traditional Chinese Medicine Hospital (The Fourth Clinical Medical School of Guangzhou University of Chinese Medicine), Shenzhen, China.

Department of Neurology, People's Hospital of Longhua, Shenzhen, China.

出版信息

PLoS One. 2025 Mar 20;20(3):e0319297. doi: 10.1371/journal.pone.0319297. eCollection 2025.

Abstract

BACKGROUND AND OBJECTIVE

Elderly patients with Chronic obstructive pulmonary disease (COPD) and respiratory failure admitted to the intensive care unit (ICU) have a poor prognosis, and the occurrence of delirium further worsens outcomes and increases hospitalization costs. This study aimed to develop a predictive model for delirium in this patient population and identify associated risk factors.

METHODS

Data for the machine learning model were obtained from the MIMIC-IV database. Feature variable screening was conducted using Lasso regression and the best subset method. Four models-K-nearest neighbor, random forest, logistic regression, and extreme gradient boosting (XGBoost)-were trained and optimized to predict delirium risk. The stability of the model is evaluated using ten-fold cross validation and the effectiveness of the model on the validation set is evaluated using accuracy, F1 score, precision and recall. The SHapley Additive exPlanations (SHAP) method was used to explain the importance of each variable in the model.

RESULTS

A total of 1,155 patients admitted to the intensive care unit between 2008 and 2019 were included in the study, with a delirium incidence of 12.9% (149/1,155). Among the four ML models evaluated, the XGBoost model demonstrated the best discriminative ability. In the validation set, it achieved an AUC of 0.932, indicating superior performance with high accuracy, precision, recall, and F1 scores of 0.891, 0.839, 0.795, and 0.810, respectively. Key features identified through SHAP analysis included the Glasgow Coma Scale (GCS) verbal score, length of hospital stay, mean SpO₂ on the first day of ICU admission, Modification of Diet in Renal Disease (MDRD) equation score, mean diastolic blood pressure, GCS motor score, gender, and duration of noninvasive ventilation. These findings provide valuable insights for individualized risk management.

CONCLUSIONS

The developed prediction model effectively predicts the occurrence of delirium in elderly COPD patients with respiratory failure in the ICU. This model can assist clinical decision-making, potentially improving patient outcomes and reducing healthcare costs.

摘要

背景与目的

入住重症监护病房(ICU)的慢性阻塞性肺疾病(COPD)合并呼吸衰竭的老年患者预后较差,而谵妄的发生会进一步恶化预后并增加住院费用。本研究旨在建立该患者群体谵妄的预测模型,并识别相关危险因素。

方法

机器学习模型的数据来自MIMIC-IV数据库。使用套索回归和最佳子集法进行特征变量筛选。训练并优化了四个模型——K近邻、随机森林、逻辑回归和极端梯度提升(XGBoost)——以预测谵妄风险。使用十折交叉验证评估模型的稳定性,并使用准确率、F1分数、精确率和召回率评估模型在验证集上的有效性。采用夏普利值加法解释(SHAP)方法解释模型中每个变量的重要性。

结果

本研究纳入了2008年至2019年间入住重症监护病房的1155例患者,谵妄发生率为12.9%(149/1155)。在所评估的四个机器学习模型中,XGBoost模型表现出最佳的判别能力。在验证集中,其曲线下面积(AUC)为0.932,表明性能优异,准确率、精确率、召回率和F1分数分别为0.891、0.839、0.795和0.810。通过SHAP分析确定的关键特征包括格拉斯哥昏迷量表(GCS)言语评分、住院时间、入住ICU第一天的平均血氧饱和度(SpO₂)、肾脏病饮食改良(MDRD)方程评分、平均舒张压、GCS运动评分、性别和无创通气时间。这些发现为个体化风险管理提供了有价值的见解。

结论

所建立的预测模型能有效预测ICU中合并呼吸衰竭的老年COPD患者谵妄的发生。该模型可协助临床决策,有可能改善患者预后并降低医疗成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bb5/11925466/113ab3566b44/pone.0319297.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验