Suppr超能文献

基于腹部增强CT图像形状特征的主胰管扩张和胰腺实质萎缩的自动检测

Automatic detection of main pancreatic duct dilation and pancreatic parenchymal atrophy based on a shape feature in abdominal contrast-enhanced CT images.

作者信息

Ambo Shintaro, Hirano Ryo, Hattori Chihiro

机构信息

Canon Medical Systems Corporation, Otawara, Japan.

出版信息

J Med Imaging (Bellingham). 2025 Jan;12(1):014504. doi: 10.1117/1.JMI.12.1.014504. Epub 2025 Jan 31.

Abstract

PURPOSE

The purpose of this study was to develop and evaluate an algorithm for calculating a shape feature to automatically detect both main pancreatic duct dilation (MPDD) and pancreatic parenchymal atrophy (PPA) in abdominal contrast-enhanced CT (CE-CT) images.

APPROACH

The proposed algorithm for the automatic detection of MPDD and PPA is composed of five processes: coarse pancreas segmentation, fine pancreas segmentation, main pancreatic duct (MPD) segmentation, centerline estimation, and shape feature calculation. First, the pancreas region is segmented by a deep learning convolutional neural network (CNN). Then, the MPD region is segmented inside the pancreatic region by the deep learning CNN. Next, centerline estimation is performed using Dijkstra's rooting algorithm. Finally, in shape feature calculation, the cross-sectional area ratio of the pancreatic duct to the pancreatic parenchyma (DP ratio) is calculated in all cross sections perpendicular to the identified centerline, and the 90th percentile value of the DP ratio for all cross sections (90th DP ratio) is calculated. The detection performance of the 90th DP ratio for MPDD and PPA was evaluated using 56 abdominal CE-CT images available as public data.

RESULTS

The average of the 90th DP ratio was 0.059 in 48 cases with MPDD and 0.007 in eight cases without MPDD ( ) and 0.074 in 31 cases with PPA and 0.023 in 25 cases without PPA ( ).

CONCLUSIONS

We have developed an algorithm for calculating an automatically measurable shape feature called the 90th DP ratio for the detection of MPDD and PPA.

摘要

目的

本研究的目的是开发并评估一种算法,用于计算一种形状特征,以在腹部增强CT(CE-CT)图像中自动检测主胰管扩张(MPDD)和胰腺实质萎缩(PPA)。

方法

所提出的用于自动检测MPDD和PPA的算法由五个过程组成:胰腺粗分割、胰腺细分割、主胰管(MPD)分割、中心线估计和形状特征计算。首先,通过深度学习卷积神经网络(CNN)对胰腺区域进行分割。然后,在胰腺区域内通过深度学习CNN对MPD区域进行分割。接下来,使用迪杰斯特拉生根算法进行中心线估计。最后,在形状特征计算中,计算在垂直于识别出的中心线的所有横截面中胰管与胰腺实质的横截面积比(DP比),并计算所有横截面的DP比的第90百分位数(第90百分位DP比)。使用作为公共数据的56张腹部CE-CT图像评估第90百分位DP比对MPDD和PPA的检测性能。

结果

48例MPDD患者的第90百分位DP比平均值为0.059,8例无MPDD患者的为0.007( );31例PPA患者的为0.074,25例无PPA患者的为0.023( )。

结论

我们开发了一种算法,用于计算一种名为第90百分位DP比的自动可测量形状特征,以检测MPDD和PPA。

相似文献

2
Centerline-guided reinforcement learning model for pancreatic duct identifications.用于胰管识别的中心线引导强化学习模型
J Med Imaging (Bellingham). 2024 Nov;11(6):064002. doi: 10.1117/1.JMI.11.6.064002. Epub 2024 Nov 8.

本文引用的文献

1
Anatomical attention can help to segment the dilated pancreatic duct in abdominal CT.解剖学注意力有助于在腹部 CT 中分割扩张的胰管。
Int J Comput Assist Radiol Surg. 2024 Apr;19(4):655-664. doi: 10.1007/s11548-023-03049-z. Epub 2024 Mar 18.
2
Deep Learning Applications in Pancreatic Cancer.深度学习在胰腺癌中的应用
Cancers (Basel). 2024 Jan 19;16(2):436. doi: 10.3390/cancers16020436.
5
Pancreatic cancer: Advances and challenges.胰腺癌:进展与挑战。
Cell. 2023 Apr 13;186(8):1729-1754. doi: 10.1016/j.cell.2023.02.014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验