Suppr超能文献

基于扩散方程的光声层析成像自监督光通量校正网络

Self-supervised light fluence correction network for photoacoustic tomography based on diffusion equation.

作者信息

Liang Zhaoyong, Mo Zongxin, Zhang Shuangyang, Chen Long, Wang Danni, Hu Chaobin, Qi Li

机构信息

School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China.

Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong 510515, China.

出版信息

Photoacoustics. 2025 Jan 11;42:100684. doi: 10.1016/j.pacs.2025.100684. eCollection 2025 Apr.

Abstract

Deep learning (DL) shows promise in estimating the absorption coefficient distribution of biological tissue in quantitative photoacoustic tomography (QPAT) imaging, but its application is limited by a lack of ground truth for supervised network training. To address this issue, we propose a DL-based light fluence correction method that only uses the original PAT images for network training. Our self-supervised QPAT network model, which we termed SQPA-Net, introduces light fluence estimation based on diffusion equation to the loss function, and thus guides the model to learn an implicit representation of photoacoustic light transport within tissue. Simulation and small animal imaging experiments demonstrate the effectiveness and efficiency of our method. Compared to current DL-based methods and traditional iterative correction method, the proposed SQPA-Net achieves better light fluence correction results and significantly reduces the processing time.

摘要

深度学习(DL)在定量光声断层扫描(QPAT)成像中估计生物组织的吸收系数分布方面显示出前景,但其应用受到监督网络训练缺乏真实数据的限制。为了解决这个问题,我们提出了一种基于深度学习的光通量校正方法,该方法仅使用原始PAT图像进行网络训练。我们的自监督QPAT网络模型,称为SQPA-Net,将基于扩散方程的光通量估计引入损失函数,从而引导模型学习组织内光声光传输的隐式表示。仿真和小动物成像实验证明了我们方法的有效性和效率。与当前基于深度学习的方法和传统迭代校正方法相比,所提出的SQPA-Net实现了更好的光通量校正结果,并显著减少了处理时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fef/11786910/c3fc87359392/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验