Zhang Shuangyang, Liu Jiaming, Liang Zhichao, Ge Jia, Feng Yanqiu, Chen Wufan, Qi Li
School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China.
Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China.
Photoacoustics. 2022 Aug 17;28:100390. doi: 10.1016/j.pacs.2022.100390. eCollection 2022 Dec.
In Photoacoustic Tomography (PAT), the acquired image represents a light energy deposition map of the imaging object. For quantitative imaging, the PAT image is converted into an absorption coefficient ( ) map by dividing the light fluence (LF). Previous methods usually assume a uniform tissue distribution, and consequently degrade the LF correction results. Here, we propose a simple method to reconstruct the pixel-wise map. Our method is based on a non-segmentation-based iterative algorithm, which alternately optimizes the LF distribution and the map. Using simulation data, as well as phantom and animal data, we implemented our algorithm and compared it to segmentation-based correction methods. The results show that our method can obtain accurate estimation of the LF distribution and therefore improve the image quality and feature visibility of the map. Our method may facilitate efficient calculation of the concentration distributions of endogenous and exogenous agents in vivo.
在光声断层成像(PAT)中,获取的图像代表成像对象的光能沉积图。对于定量成像,通过除以光通量(LF)将PAT图像转换为吸收系数( )图。以前的方法通常假设组织 分布均匀,因此会降低LF校正结果。在这里,我们提出了一种简单的方法来重建逐像素的 图。我们的方法基于一种非基于分割的迭代算法,该算法交替优化LF分布和 图。使用模拟数据以及体模和动物数据,我们实现了我们的算法,并将其与基于分割的校正方法进行了比较。结果表明,我们的方法可以获得LF分布的准确估计,从而提高 图的图像质量和特征可见性。我们的方法可能有助于高效计算体内内源性和外源性物质的浓度分布。