Thapa Rahi Bikram, Karki Subash, Shrestha Sabin
Department of Pharmacy, Purbanchal University School of Health Science, Gothgaun, Morang, Nepal.
Department of Pharmacy, Manmohan Memorial Institute of Health Science, Soalteemode, Kathmandu, Nepal.
Explor Res Clin Soc Pharm. 2025 Jan 15;17:100564. doi: 10.1016/j.rcsop.2025.100564. eCollection 2025 Mar.
Potential drug-drug interactions (pDDIs) pose substantial risks in clinical practice, leading to increased morbidity, mortality, and healthcare costs. Tools like Micromedex drug-drug interaction checker are commonly used to screen for pDDIs, yet emerging AI models, such as ChatGPT, offer the potential for supplementary pDDI prediction. However, the accuracy and reliability of these AI tools in a clinical context remain largely untested.
This study evaluates pDDIs in discharge prescriptions for medical ward patients and assesses ChatGPT-4.0's effectiveness in predicting these interactions compared to Micromedex drug-drug interaction checker.
A cross-sectional study was conducted over three months with 301 discharged patients. pDDIs were identified using Micromedex drug-drug interaction checker, detailing each interaction's occurrence, severity, onset, and documentation. ChatGPT-4.0 predictions were then analyzed against Micromedex data. Binary logistic regression analysis was applied to assess the influence of predictor variables in the occurrence of pDDIs.
1551 drugs were prescribed to 301 patients, averaging 5.15 per patient. pDDIs were detected in 60.13 % of patients, averaging 3.17 pDDIs per patient, ChatGPT-4.0 accurately identified pDDIs (100 % for occurrence) but had limited accuracy for severity (37.3 %) and moderate accuracy for onset (65.2 %). The most frequent major interaction was between Cefuroxime Axetil and Pantoprazole Sodium. Polypharmacy significantly increased the risk of pDDIs (OR: 3.960, < 0.001).
pDDIs are prevalent in internal medicine discharge prescriptions, with polypharmacy heightening the risk. While ChatGPT 4.0 accurately identifies pDDI occurrence, its limitations in predicting severity, onset, and documentation underscore healthcare professionals' need for careful oversight.
潜在药物相互作用(pDDIs)在临床实践中构成重大风险,会导致发病率、死亡率上升以及医疗成本增加。像Micromedex药物相互作用检查器这样的工具通常用于筛查pDDIs,但新兴的人工智能模型,如ChatGPT,为辅助pDDI预测提供了潜力。然而,这些人工智能工具在临床环境中的准确性和可靠性在很大程度上仍未得到检验。
本研究评估内科病房患者出院处方中的pDDIs,并评估ChatGPT-4.0与Micromedex药物相互作用检查器相比在预测这些相互作用方面的有效性。
对301名出院患者进行了为期三个月的横断面研究。使用Micromedex药物相互作用检查器识别pDDIs,详细记录每种相互作用的发生情况、严重程度、发作时间和记录情况。然后根据Micromedex数据对ChatGPT-4.0的预测进行分析。应用二元逻辑回归分析来评估预测变量对pDDIs发生的影响。
为301名患者开具了1551种药物,平均每位患者5.15种。60.13%的患者检测到pDDIs,平均每位患者3.17种pDDIs,ChatGPT-4.0准确识别了pDDIs的发生情况(发生率为100%),但严重程度的准确性有限(37.3%),发作时间的准确性中等(65.2%)。最常见的主要相互作用是头孢呋辛酯与泮托拉唑钠之间的相互作用。联合用药显著增加了pDDIs的风险(OR:3.960,<0.001)。
pDDIs在内科出院处方中普遍存在,联合用药会增加风险。虽然ChatGPT 4.0能准确识别pDDI的发生情况,但其在预测严重程度、发作时间和记录方面的局限性凸显了医疗专业人员进行仔细监督的必要性。