Suppr超能文献

基于半监督学习的社交媒体自杀风险评估

Suicide Risk Assessment on Social Media with Semi-Supervised Learning.

作者信息

Lovitt Max, Ma Haotian, Wang Song, Peng Yifan

机构信息

Population Health Sciences, Weill Cornell Medicine, New York, New York, USA.

The Masters School, Dobbs Ferry, New York, USA.

出版信息

Proc IEEE Int Conf Big Data. 2024 Dec;2024:8541-8549. doi: 10.1109/bigdata62323.2024.10825422.

Abstract

With social media communities increasingly becoming places where suicidal individuals post and congregate, natural language processing presents an exciting avenue for the development of automated suicide risk assessment systems. However, past efforts suffer from a lack of labeled data and class imbalances within the available labeled data. To accommodate this task's imperfect data landscape, we propose a semi-supervised framework that leverages labeled (n=500) and unlabeled (n=1,500) data and expands upon the self-training algorithm with a novel pseudo-label acquisition process designed to handle imbalanced datasets. To further ensure pseudo-label quality, we manually verify a subset of the pseudo-labeled data that was not predicted unanimously across multiple trials of pseudo-label generation. We test various models to serve as the backbone for this framework, ultimately deciding that RoBERTa performs the best. Ultimately, by leveraging partially validated pseudo-labeled data in addition to ground-truth labeled data, we substantially improve our model's ability to assess suicide risk from social media posts.

摘要

随着社交媒体社区越来越成为自杀个体发布和聚集的场所,自然语言处理为自动化自杀风险评估系统的开发提供了一条令人兴奋的途径。然而,过去的努力存在缺乏标注数据以及可用标注数据中类别不平衡的问题。为了适应这项任务不完美的数据情况,我们提出了一个半监督框架,该框架利用标注数据(n = 500)和未标注数据(n = 1500),并通过一种新颖的伪标签获取过程对自训练算法进行扩展,该过程旨在处理不平衡数据集。为了进一步确保伪标签质量,我们手动验证了在多个伪标签生成试验中未得到一致预测的部分伪标注数据。我们测试了各种模型作为该框架的基础,最终确定RoBERTa表现最佳。最终,通过除了真实标注数据之外还利用部分经过验证的伪标注数据,我们大幅提高了模型从社交媒体帖子评估自杀风险的能力。

相似文献

1
Suicide Risk Assessment on Social Media with Semi-Supervised Learning.基于半监督学习的社交媒体自杀风险评估
Proc IEEE Int Conf Big Data. 2024 Dec;2024:8541-8549. doi: 10.1109/bigdata62323.2024.10825422.
9
Enhanced Diabetic Retinopathy Detection: An Explainable Semi-Supervised Approach Using Contrastive Learning.
IEEE J Biomed Health Inform. 2025 Mar 17;PP. doi: 10.1109/JBHI.2025.3551696.

本文引用的文献

7
Natural Language Processing of Social Media as Screening for Suicide Risk.社交媒体的自然语言处理用于自杀风险筛查。
Biomed Inform Insights. 2018 Aug 27;10:1178222618792860. doi: 10.1177/1178222618792860. eCollection 2018.
8
Suicide prevention strategies: a systematic review.自杀预防策略:一项系统评价
JAMA. 2005 Oct 26;294(16):2064-74. doi: 10.1001/jama.294.16.2064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验