Suppr超能文献

社交媒体的自然语言处理用于自杀风险筛查。

Natural Language Processing of Social Media as Screening for Suicide Risk.

作者信息

Coppersmith Glen, Leary Ryan, Crutchley Patrick, Fine Alex

机构信息

Qntfy, Boston, MA, USA.

出版信息

Biomed Inform Insights. 2018 Aug 27;10:1178222618792860. doi: 10.1177/1178222618792860. eCollection 2018.

Abstract

Suicide is among the 10 most common causes of death, as assessed by the World Health Organization. For every death by suicide, an estimated 138 people's lives are meaningfully affected, and almost any other statistic around suicide deaths is equally alarming. The pervasiveness of social media-and the near-ubiquity of mobile devices used to access social media networks-offers new types of data for understanding the behavior of those who (attempt to) take their own lives and suggests new possibilities for preventive intervention. We demonstrate the feasibility of using social media data to detect those at risk for suicide. Specifically, we use natural language processing and machine learning (specifically deep learning) techniques to detect quantifiable signals around suicide attempts, and describe designs for an automated system for estimating suicide risk, usable by those without specialized mental health training (eg, a primary care doctor). We also discuss the ethical use of such technology and examine privacy implications. Currently, this technology is only used for intervention for individuals who have "opted in" for the analysis and intervention, but the technology enables scalable screening for suicide risk, potentially identifying many people who are at risk preventively and prior to any engagement with a health care system. This raises a significant cultural question about the trade-off between privacy and prevention-we have potentially life-saving technology that is currently reaching only a fraction of the possible people at risk because of respect for their privacy. Is the current trade-off between privacy and prevention the right one?

摘要

据世界卫生组织评估,自杀是十大常见死因之一。每有一例自杀死亡,估计有138人的生活受到重大影响,而且几乎与自杀死亡相关的任何其他统计数据都同样令人担忧。社交媒体的普及以及用于访问社交网络的移动设备几乎无处不在,为了解那些(试图)自杀者的行为提供了新型数据,并为预防性干预提出了新的可能性。我们证明了利用社交媒体数据检测自杀风险人群的可行性。具体而言,我们使用自然语言处理和机器学习(特别是深度学习)技术来检测自杀未遂周围的可量化信号,并描述一种自动化系统的设计,用于估计自杀风险,供那些没有接受过专业心理健康培训的人(例如初级保健医生)使用。我们还讨论了此类技术的道德使用,并审视了隐私问题。目前,这项技术仅用于对“选择加入”分析和干预的个人进行干预,但该技术能够对自杀风险进行可扩展的筛查,有可能在任何人与医疗保健系统接触之前就预防性地识别出许多有风险的人。这就引发了一个关于隐私与预防之间权衡的重大文化问题——我们拥有可能挽救生命的技术,目前却因为尊重隐私而只能触及一小部分可能有风险的人。当前隐私与预防之间的权衡是否正确呢?

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043d/6111391/d2e33ace4a2c/10.1177_1178222618792860-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验