Suppr超能文献

因果推理机器学习揭示了2022年中国臭氧反弹的驱动因素。

Causal-inference machine learning reveals the drivers of China's 2022 ozone rebound.

作者信息

Wang Lin, Chen Baihua, Ouyang Jingyi, Mu Yanshu, Zhen Ling, Yang Lin, Xu Wei, Tang Lina

机构信息

Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Environ Sci Ecotechnol. 2025 Jan 10;24:100524. doi: 10.1016/j.ese.2025.100524. eCollection 2025 Mar.

Abstract

Ground-level ozone concentrations rebounded significantly across China in 2022, challenging air quality management and public health. Identifying the drivers of this rebound is crucial for designing effective mitigation strategies. Commonly used methods, such as chemical transport models and machine learning, provide valuable insights but face limitations-chemical transport models are computationally intensive, while machine learning often fails to address confounding factors or establish causality. Here we show that elevated temperatures and increased solar radiation, as primary meteorological drivers, collectively account for 57 % of the total ozone increase, based on an integrated analysis of ground-based monitoring data, satellite observations, and meteorological reanalysis information using explainable machine learning and causal inference techniques. Compared to the year 2021, 90 % of the stations reported an increase in the Formaldehyde to Nitrogen ratio, implying a growing sensitivity of ozone formation to nitrogen oxide levels. These findings highlight the significant causal role of meteorological changes in the ozone rebound, urging the adoption of targeted ozone mitigation strategies under climate warming, particularly through varied regional strategies that consider existing anthropogenic emission levels and the prospective increase in biogenic volatile organic compounds. This identification of causal relationships in air pollution dynamics can support data-driven and accurate decision-making.

摘要

2022年,中国地面臭氧浓度显著反弹,对空气质量管控和公众健康构成挑战。确定此次反弹的驱动因素对于制定有效的减排策略至关重要。常用方法,如化学传输模型和机器学习,虽能提供有价值的见解,但也存在局限性——化学传输模型计算量大,而机器学习往往无法处理混杂因素或确定因果关系。在此,我们表明,基于使用可解释机器学习和因果推断技术对地面监测数据、卫星观测数据以及气象再分析信息进行的综合分析,高温和太阳辐射增加作为主要气象驱动因素,共同导致了臭氧总量增加的57%。与2021年相比,90%的监测站点报告甲醛与氮的比值上升,这意味着臭氧形成对氮氧化物水平的敏感性在增加。这些发现凸显了气象变化在臭氧反弹中所起的重要因果作用,促使在气候变暖背景下采取有针对性的臭氧减排策略,特别是通过考虑现有人为排放水平和生物源挥发性有机化合物预期增加情况的差异化区域策略。这种对空气污染动态因果关系的识别有助于数据驱动的准确决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e81d/11786889/4c45793043b3/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验